These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 18458454)
1. In vitro biocompatibility of equal channel angular processed (ECAP) titanium. Kim TN; Balakrishnan A; Lee BC; Kim WS; Smetana K; Park JK; Panigrahi BB Biomed Mater; 2007 Sep; 2(3):S117-20. PubMed ID: 18458454 [TBL] [Abstract][Full Text] [Related]
2. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Park JW; Kim YJ; Park CH; Lee DH; Ko YG; Jang JH; Lee CS Acta Biomater; 2009 Oct; 5(8):3272-80. PubMed ID: 19426841 [TBL] [Abstract][Full Text] [Related]
3. In vitro biocompatibility of an ultrafine grained zirconium. Saldaña L; Méndez-Vilas A; Jiang L; Multigner M; González-Carrasco JL; Pérez-Prado MT; González-Martín ML; Munuera L; Vilaboa N Biomaterials; 2007 Oct; 28(30):4343-54. PubMed ID: 17624424 [TBL] [Abstract][Full Text] [Related]
4. In vitro fibroblast response to ultra fine grained titanium produced by a severe plastic deformation process. Kim TN; Balakrishnan A; Lee BC; Kim WS; Dvorankova B; Smetana K; Park JK; Panigrahi BB J Mater Sci Mater Med; 2008 Feb; 19(2):553-7. PubMed ID: 17619956 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical and cellular behavior of ultrafine-grained titanium in vitro. Maleki-Ghaleh H; Hajizadeh K; Hadjizadeh A; Shakeri MS; Ghobadi Alamdari S; Masoudfar S; Aghaie E; Javidi M; Zdunek J; Kurzydlowski KJ Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():299-304. PubMed ID: 24863228 [TBL] [Abstract][Full Text] [Related]
6. Response of human bone marrow stromal cells to a novel ultra-fine-grained and dispersion-strengthened titanium-based material. Despang F; Bernhardt A; Lode A; Hanke T; Handtrack D; Kieback B; Gelinsky M Acta Biomater; 2010 Mar; 6(3):1006-13. PubMed ID: 19800426 [TBL] [Abstract][Full Text] [Related]
7. Accelerated growth of preosteoblastic cells on ultrafine grained titanium. Estrin Y; Kasper C; Diederichs S; Lapovok R J Biomed Mater Res A; 2009 Sep; 90(4):1239-42. PubMed ID: 18671257 [TBL] [Abstract][Full Text] [Related]
8. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Truong VK; Lapovok R; Estrin YS; Rundell S; Wang JY; Fluke CJ; Crawford RJ; Ivanova EP Biomaterials; 2010 May; 31(13):3674-83. PubMed ID: 20163851 [TBL] [Abstract][Full Text] [Related]
9. Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications. Munir K; Lin J; Wright PFA; Ozan S; Li Y; Wen C Acta Biomater; 2022 Sep; 149():387-398. PubMed ID: 35817341 [TBL] [Abstract][Full Text] [Related]
11. Biocompatibility of beta-stabilizing elements of titanium alloys. Eisenbarth E; Velten D; Müller M; Thull R; Breme J Biomaterials; 2004 Nov; 25(26):5705-13. PubMed ID: 15147816 [TBL] [Abstract][Full Text] [Related]
12. On the importance of crystallographic texture in the biocompatibility of titanium based substrate. Hoseini M; Bocher P; Shahryari A; Azari F; Szpunar JA; Vali H J Biomed Mater Res A; 2014 Oct; 102(10):3631-8. PubMed ID: 24254817 [TBL] [Abstract][Full Text] [Related]
13. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. Saldaña L; Barranco V; González-Carrasco JL; Rodríguez M; Munuera L; Vilaboa N J Biomed Mater Res A; 2007 May; 81(2):334-46. PubMed ID: 17120220 [TBL] [Abstract][Full Text] [Related]
15. Biocompatibility of corrosion-resistant zeolite coatings for titanium alloy biomedical implants. Bedi RS; Beving DE; Zanello LP; Yan Y Acta Biomater; 2009 Oct; 5(8):3265-71. PubMed ID: 19433139 [TBL] [Abstract][Full Text] [Related]
16. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP. An B; Li Z; Diao X; Xin H; Zhang Q; Jia X; Wu Y; Li K; Guo Y Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():34-41. PubMed ID: 27287096 [TBL] [Abstract][Full Text] [Related]
17. Corrosion behaviour of a beta-titanium alloy. Martin E; Manceur A; Polizu S; Savadogo O; Wu MH; Yahia L Biomed Mater Eng; 2006; 16(3):171-82. PubMed ID: 16518016 [TBL] [Abstract][Full Text] [Related]
18. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications. Xie KY; Wang Y; Zhao Y; Chang L; Wang G; Chen Z; Cao Y; Liao X; Lavernia EJ; Valiev RZ; Sarrafpour B; Zoellner H; Ringer SP Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3530-6. PubMed ID: 23706243 [TBL] [Abstract][Full Text] [Related]
19. Initial exploration of Ti-Ta, Ti-Ta-Ir and Ti-Ir alloys: Candidate materials for coronary stents. O'Brien B; Stinson J; Carroll W Acta Biomater; 2008 Sep; 4(5):1553-9. PubMed ID: 18396116 [TBL] [Abstract][Full Text] [Related]
20. The processing of ultrafine-grained Mg tubes for biodegradable stents. Ge Q; Dellasega D; Demir AG; Vedani M Acta Biomater; 2013 Nov; 9(10):8604-10. PubMed ID: 23333440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]