BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 18458460)

  • 1. A kind of novel biodegradable hydrogel made from copolymerization of gelatin with polypseudorotaxanes based on alpha-CDs.
    Hou D; Tong X; Yu H; Zhang AY; Feng ZG
    Biomed Mater; 2007 Sep; 2(3):S147-52. PubMed ID: 18458460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin.
    Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N
    Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery.
    Li J; Li X; Ni X; Wang X; Li H; Leong KW
    Biomaterials; 2006 Aug; 27(22):4132-40. PubMed ID: 16584769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Polypseudorotaxanes composed of star-shaped porphyrin-cored poly(epsilon-caprolactone) and alpha-cyclodextrin.
    Dai XH; Dong CM; Fa HB; Yan D; Wei Y
    Biomacromolecules; 2006 Dec; 7(12):3527-33. PubMed ID: 17154484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative contrasts in the photopolymerization of acrylamide and methacrylamide-functionalized gelatin hydrogel building blocks.
    Billiet T; Van Gasse B; Gevaert E; Cornelissen M; Martins JC; Dubruel P
    Macromol Biosci; 2013 Nov; 13(11):1531-45. PubMed ID: 24000135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility.
    Vermonden T; Fedorovich NE; van Geemen D; Alblas J; van Nostrum CF; Dhert WJ; Hennink WE
    Biomacromolecules; 2008 Mar; 9(3):919-26. PubMed ID: 18288801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of novel supramolecular hydrogels with high mechanical strength and adjustable thermosensitivity.
    Zhao SP; Zhang LM; Ma D; Yang C; Yan L
    J Phys Chem B; 2006 Aug; 110(33):16503-7. PubMed ID: 16913783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery.
    Li J; Loh XJ
    Adv Drug Deliv Rev; 2008 Jun; 60(9):1000-17. PubMed ID: 18413280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin hydrogel surfaces: interrelationship between microscopic structure and mechanical property of surface regions and cell adhesiveness.
    Ohya S; Kidoaki S; Matsuda T
    Biomaterials; 2005 Jun; 26(16):3105-11. PubMed ID: 15603805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin.
    Ni X; Cheng A; Li J
    J Biomed Mater Res A; 2009 Mar; 88(4):1031-6. PubMed ID: 18404710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation processed hydrogel of poly (vinyl alcohol) with biodegradable polysaccharides.
    Chowdhury MN; Alam AK; Dafader NC; Haque ME; Akhtar F; Ahmed MU; Rashid H; Begum R
    Biomed Mater Eng; 2006; 16(3):223-8. PubMed ID: 16518021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrocinnamate-functionalized gelatin: synthesis and "smart"hydrogel formation via photo-cross-linking.
    Gattás-Asfura KM; Weisman E; Andreopoulos FM; Micic M; Muller B; Sirpal S; Pham SM; Leblanc RM
    Biomacromolecules; 2005; 6(3):1503-9. PubMed ID: 15877371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of gelatin hydrogel pads as antibacterial wound dressings.
    Rattanaruengsrikul V; Pimpha N; Supaphol P
    Macromol Biosci; 2009 Oct; 9(10):1004-15. PubMed ID: 19530128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins.
    Deng W; Yamaguchi H; Takashima Y; Harada A
    Chem Asian J; 2008 Apr; 3(4):687-95. PubMed ID: 18293292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyrotaxanes for applications in life science and biotechnology.
    Li JJ; Zhao F; Li J
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):427-43. PubMed ID: 21360153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-responsive biomaterials: development and applications.
    Katz JS; Burdick JA
    Macromol Biosci; 2010 Apr; 10(4):339-48. PubMed ID: 20014197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable and electroactive TEMPO-substituted acrylamide/lactide copolymers.
    Zhuang X; Zhang H; Chikushi N; Zhao C; Oyaizu K; Chen X; Nishide H
    Macromol Biosci; 2010 Oct; 10(10):1203-9. PubMed ID: 20572271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-transition thermodynamics of N-isopropylacrylamide hydrogels.
    Rice CV
    Biomacromolecules; 2006 Oct; 7(10):2923-5. PubMed ID: 17025371
    [No Abstract]   [Full Text] [Related]  

  • 20. Design of polyrotaxanes as supramolecular conjugates for cells and tissues.
    Yui N; Ooya T
    J Artif Organs; 2004; 7(2):62-8. PubMed ID: 15309672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.