These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18458483)

  • 1. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction.
    McManus M; Boland E; Sell S; Bowen W; Koo H; Simpson D; Bowlin G
    Biomed Mater; 2007 Dec; 2(4):257-62. PubMed ID: 18458483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model.
    McManus MC; Boland ED; Simpson DG; Barnes CP; Bowlin GL
    J Biomed Mater Res A; 2007 May; 81(2):299-309. PubMed ID: 17120217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of electrospun fibrinogen structures.
    McManus MC; Boland ED; Koo HP; Barnes CP; Pawlowski KJ; Wnek GE; Simpson DG; Bowlin GL
    Acta Biomater; 2006 Jan; 2(1):19-28. PubMed ID: 16701855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified collagen fleece, a scaffold for transplantation of human bladder smooth muscle cells.
    Danielsson C; Ruault S; Basset-Dardare A; Frey P
    Biomaterials; 2006 Mar; 27(7):1054-60. PubMed ID: 16174527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning.
    Telemeco TA; Ayres C; Bowlin GL; Wnek GE; Boland ED; Cohen N; Baumgarten CM; Mathews J; Simpson DG
    Acta Biomater; 2005 Jul; 1(4):377-85. PubMed ID: 16701819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique.
    Vaz CM; van Tuijl S; Bouten CV; Baaijens FP
    Acta Biomater; 2005 Sep; 1(5):575-82. PubMed ID: 16701837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Experimental studies on canine bladder smooth muscle cells cultured on acellular small intestinal submucosa in vitro].
    Han P; Yang Z; Zhi W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1366-70. PubMed ID: 18277686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction.
    Feng C; Xu YM; Fu Q; Zhu WD; Cui L; Chen J
    J Biomed Mater Res A; 2010 Jul; 94(1):317-25. PubMed ID: 20166222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies.
    Baker SC; Atkin N; Gunning PA; Granville N; Wilson K; Wilson D; Southgate J
    Biomaterials; 2006 Jun; 27(16):3136-46. PubMed ID: 16473404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering.
    Xu C; Inai R; Kotaki M; Ramakrishna S
    Tissue Eng; 2004; 10(7-8):1160-8. PubMed ID: 15363172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.
    Li M; Guo Y; Wei Y; MacDiarmid AG; Lelkes PI
    Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen.
    Sell S; Barnes C; Simpson D; Bowlin G
    J Biomed Mater Res A; 2008 Apr; 85(1):115-26. PubMed ID: 17688269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressed collagen gel: a novel scaffold for human bladder cells.
    Engelhardt EM; Stegberg E; Brown RA; Hubbell JA; Wurm FM; Adam M; Frey P
    J Tissue Eng Regen Med; 2010 Feb; 4(2):123-30. PubMed ID: 19842107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.
    Park SH; Kim TG; Kim HC; Yang DY; Park TG
    Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration.
    Dikovsky D; Bianco-Peled H; Seliktar D
    Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manufacturing of multi-layered nanofibrous structures composed of polyurethane and poly(ethylene oxide) as potential blood vessel scaffolds.
    Shin JW; Lee YJ; Heo SJ; Park SA; Kim SH; Kim YJ; Kim DH; Shin JW
    J Biomater Sci Polym Ed; 2009; 20(5-6):757-71. PubMed ID: 19323888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyesterurethane foam scaffold for smooth muscle cell tissue engineering.
    Danielsson C; Ruault S; Simonet M; Neuenschwander P; Frey P
    Biomaterials; 2006 Mar; 27(8):1410-5. PubMed ID: 16157370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled fabrication of a biological vascular substitute.
    Stitzel J; Liu J; Lee SJ; Komura M; Berry J; Soker S; Lim G; Van Dyke M; Czerw R; Yoo JJ; Atala A
    Biomaterials; 2006 Mar; 27(7):1088-94. PubMed ID: 16131465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic electrospun nanofibers for tissue regeneration.
    Liao S; Li B; Ma Z; Wei H; Chan C; Ramakrishna S
    Biomed Mater; 2006 Sep; 1(3):R45-53. PubMed ID: 18458387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel capillary channel fiber scaffolds for guided tissue engineering.
    Lu Q; Simionescu A; Vyavahare N
    Acta Biomater; 2005 Nov; 1(6):607-14. PubMed ID: 16701841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.