These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18458483)

  • 21. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior.
    Munoz-Pinto DJ; Bulick AS; Hahn MS
    J Biomed Mater Res A; 2009 Jul; 90(1):303-16. PubMed ID: 19402139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reinforcement of porous alginate scaffolds by incorporating electrospun fibres.
    Sakai S; Takagi Y; Yamada Y; Yamaguchi T; Kawakami K
    Biomed Mater; 2008 Sep; 3(3):034102. PubMed ID: 18689918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-density collagen gel tubes as a matrix for primary human bladder smooth muscle cells.
    Micol LA; Ananta M; Engelhardt EM; Mudera VC; Brown RA; Hubbell JA; Frey P
    Biomaterials; 2011 Feb; 32(6):1543-8. PubMed ID: 21074843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering.
    Liu Y; Bharadwaj S; Lee SJ; Atala A; Zhang Y
    Biomaterials; 2009 Aug; 30(23-24):3865-73. PubMed ID: 19427687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide) nanofibrous membrane scaffolds.
    Inanç B; Arslan YE; Seker S; Elçin AE; Elçin YM
    J Biomed Mater Res A; 2009 Jul; 90(1):186-95. PubMed ID: 18491392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bladder autoaugmentation using various biodegradable scaffolds seeded with autologous smooth muscle cells in a rabbit model.
    Lai JY; Chang PY; Lin JN
    J Pediatr Surg; 2005 Dec; 40(12):1869-73. PubMed ID: 16338308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration.
    Horst M; Milleret V; Nötzli S; Madduri S; Sulser T; Gobet R; Eberli D
    J Biomed Mater Res A; 2014 Jul; 102(7):2116-24. PubMed ID: 23893914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailored laminin-332 alpha3 sequence is tethered through an enzymatic linker to a collagen scaffold to promote cellular adhesion.
    Damodaran G; Collighan R; Griffin M; Navsaria H; Pandit A
    Acta Biomater; 2009 Sep; 5(7):2441-50. PubMed ID: 19364681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering.
    Krebs MD; Sutter KA; Lin AS; Guldberg RE; Alsberg E
    Acta Biomater; 2009 Oct; 5(8):2847-59. PubMed ID: 19446056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical characteristics of electrospun aligned PCL/PLLA nanofibrous scaffolds conduct cell differentiation in human bladder tissue engineering.
    Ahvaz HH; Mobasheri H; Bakhshandeh B; Shakhssalim N; Naji M; Dodel M; Soleimani M
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4736-43. PubMed ID: 23901498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D; Guo T; Nie C; Morris SF
    Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering.
    Zhu X; Cui W; Li X; Jin Y
    Biomacromolecules; 2008 Jul; 9(7):1795-801. PubMed ID: 18578495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds.
    Harrington DA; Cheng EY; Guler MO; Lee LK; Donovan JL; Claussen RC; Stupp SI
    J Biomed Mater Res A; 2006 Jul; 78(1):157-67. PubMed ID: 16619254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regeneration of native-like neo-urinary tissue from nonbladder cell sources.
    Basu J; Jayo MJ; Ilagan RM; Guthrie KI; Sangha N; Genheimer CW; Quinlan SF; Payne R; Knight T; Rivera E; Jain D; Bertram TA; Ludlow JW
    Tissue Eng Part A; 2012 May; 18(9-10):1025-34. PubMed ID: 22136657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradable honeycomb collagen scaffold for dermal tissue engineering.
    George J; Onodera J; Miyata T
    J Biomed Mater Res A; 2008 Dec; 87(4):1103-11. PubMed ID: 18792951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications.
    Sell SA; Francis MP; Garg K; McClure MJ; Simpson DG; Bowlin GL
    Biomed Mater; 2008 Dec; 3(4):045001. PubMed ID: 18824779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun PCL in vitro: a microstructural basis for mechanical property changes.
    Johnson J; Niehaus A; Nichols S; Lee D; Koepsel J; Anderson D; Lannutti J
    J Biomater Sci Polym Ed; 2009; 20(4):467-81. PubMed ID: 19228448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.