BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18458497)

  • 1. Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization.
    Yakacki CM; Lyons MB; Rech B; Gall K; Shandas R
    Biomed Mater; 2008 Mar; 3(1):015010. PubMed ID: 18458497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermomechanics of the shape memory effect in polymers for biomedical applications.
    Gall K; Yakacki CM; Liu Y; Shandas R; Willett N; Anseth KS
    J Biomed Mater Res A; 2005 Jun; 73(3):339-48. PubMed ID: 15806564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape memory polymer foams for cerebral aneurysm reparation: effects of plasma sterilization on physical properties and cytocompatibility.
    De Nardo L; Alberti R; Cigada A; Yahia L; Tanzi MC; Farè S
    Acta Biomater; 2009 Jun; 5(5):1508-18. PubMed ID: 19136318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored (meth)acrylate shape-memory polymer networks for ophthalmic applications.
    Song L; Hu W; Wang G; Niu G; Zhang H; Cao H; Wang K; Yang H; Zhu S
    Macromol Biosci; 2010 Oct; 10(10):1194-202. PubMed ID: 20625994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medical applications of shape memory polymers.
    Sokolowski W; Metcalfe A; Hayashi S; Yahia L; Raymond J
    Biomed Mater; 2007 Mar; 2(1):S23-7. PubMed ID: 18458416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro evaluation of chemically cross-linked shape-memory acrylate-methacrylate copolymer networks as ocular implants.
    Song L; Hu W; Zhang H; Wang G; Yang H; Zhu S
    J Phys Chem B; 2010 Jun; 114(21):7172-8. PubMed ID: 20462221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape memory in un-cross-linked biodegradable polymers.
    Wong YS; Xiong Y; Venkatraman SS; Boey FY
    J Biomater Sci Polym Ed; 2008; 19(2):175-91. PubMed ID: 18237491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate.
    Kelch S; Steuer S; Schmidt AM; Lendlein A
    Biomacromolecules; 2007 Mar; 8(3):1018-27. PubMed ID: 17305394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inductively heated shape memory polymer for the magnetic actuation of medical devices.
    Buckley PR; McKinley GH; Wilson TS; Small W; Benett WJ; Bearinger JP; McElfresh MW; Maitland DJ
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2075-83. PubMed ID: 17019872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release.
    Wischke C; Neffe AT; Steuer S; Lendlein A
    J Control Release; 2009 Sep; 138(3):243-50. PubMed ID: 19470395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape-memory starch for resorbable biomedical devices.
    Beilvert A; Chaubet F; Chaunier L; Guilois S; Pavon-Djavid G; Letourneur D; Meddahi-Pellé A; Lourdin D
    Carbohydr Polym; 2014 Jan; 99():242-8. PubMed ID: 24274502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold.
    Srivastava A; Kumar A
    J Biomater Sci Polym Ed; 2009; 20(10):1393-415. PubMed ID: 19622279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications.
    Yakacki CM; Shandas R; Lanning C; Rech B; Eckstein A; Gall K
    Biomaterials; 2007 May; 28(14):2255-63. PubMed ID: 17296222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safety of plasma-based sterilization: surface modifications of polymeric medical devices induced by Sterrad and Plazlyte processes.
    Lerouge S; Tabrizian M; Wertheimer MR; Marchand R; Yahia L
    Biomed Mater Eng; 2002; 12(1):3-13. PubMed ID: 11847405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Applications of porous polymeric materials and its biocompatibility].
    Gao C; Li A; Yi X; Feng L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Dec; 16(4):511-5. PubMed ID: 12552735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of absorbable poly(ortho esters) for use in surgical implants.
    Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J
    J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic mechanical thermal analysis of two light-cured dental composites.
    Emami N; Söderholm KJ
    Dent Mater; 2005 Oct; 21(10):977-83. PubMed ID: 16039704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different gamma-irradiation doses on cytotoxicity and material properties of porous polyether-urethane polymer.
    Haugen HJ; Brunner M; Pellkofer F; Aigner J; Will J; Wintermantel E
    J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):415-23. PubMed ID: 16850461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic mechanical studies of hydrolytic degradation in isotropic and oriented Maxon B.
    Hill SP; Montes de Oca H; Klein PG; Ward IM; Rose J; Farrar D
    Biomaterials; 2006 Jun; 27(17):3168-77. PubMed ID: 16476477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomedical uses of shape memory polymers.
    Frenger P
    Biomed Sci Instrum; 1993; 29():47-50. PubMed ID: 8329629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.