These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 18458499)
21. Preparation and biological properties of PLLA/beta-TCP composites reinforced by chitosan fibers. Wang J; Qu L; Meng X; Gao J; Li H; Wen G Biomed Mater; 2008 Jun; 3(2):025004. PubMed ID: 18458373 [TBL] [Abstract][Full Text] [Related]
22. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Badami AS; Kreke MR; Thompson MS; Riffle JS; Goldstein AS Biomaterials; 2006 Feb; 27(4):596-606. PubMed ID: 16023716 [TBL] [Abstract][Full Text] [Related]
23. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Gong Y; Zhou Q; Gao C; Shen J Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355 [TBL] [Abstract][Full Text] [Related]
24. Biphasic calcium phosphate loading on polycaprolactone/poly(lacto-co-glycolic acid) membranes for improved tensile strength, in vitro biocompatibility, and in vivo tissue regeneration. Franco RA; Sadiasa A; Seo HS; Lee BT J Biomater Appl; 2014 Apr; 28(8):1164-79. PubMed ID: 24014247 [TBL] [Abstract][Full Text] [Related]
25. [Manufacture and study of porous poly(l-lactic acid) (PLLA)/beta-tricalcium phosphate (beta-TCP) composite]. Chen R; Chen H; Han J; Zhou D; Zheng C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):177-80. PubMed ID: 11450528 [TBL] [Abstract][Full Text] [Related]
26. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. Chen J; Chu B; Hsiao BS J Biomed Mater Res A; 2006 Nov; 79(2):307-17. PubMed ID: 16817203 [TBL] [Abstract][Full Text] [Related]
27. Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend. Zhang M; Wang K; Wang Z; Xing B; Zhao Q; Kong D J Mater Sci Mater Med; 2012 Nov; 23(11):2639-48. PubMed ID: 22815052 [TBL] [Abstract][Full Text] [Related]
28. [Research on cell affinity of poly-L-lactide/porcine-derived xenogeneic bone composite in vitro]. Qu X; Bei J; Wang S Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):110-4. PubMed ID: 17357454 [TBL] [Abstract][Full Text] [Related]
29. A protein/antibiotic releasing poly(lactic-co-glycolic acid)/lecithin scaffold for bone repair applications. Shi X; Wang Y; Ren L; Huang W; Wang DA Int J Pharm; 2009 May; 373(1-2):85-92. PubMed ID: 19429292 [TBL] [Abstract][Full Text] [Related]
30. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
31. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Jung Y; Kim SS; Kim YH; Kim SH; Kim BS; Kim S; Choi CY; Kim SH Biomaterials; 2005 Nov; 26(32):6314-22. PubMed ID: 15913759 [TBL] [Abstract][Full Text] [Related]
32. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Wei G; Ma PX Biomaterials; 2004 Aug; 25(19):4749-57. PubMed ID: 15120521 [TBL] [Abstract][Full Text] [Related]
33. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. Liu A; Hong Z; Zhuang X; Chen X; Cui Y; Liu Y; Jing X Acta Biomater; 2008 Jul; 4(4):1005-15. PubMed ID: 18359672 [TBL] [Abstract][Full Text] [Related]
34. Improved in vitro biocompatibility of surface-modified hydroxyapatite sponge scaffold with gelatin and BMP-2 in comparison against a commercial bone allograft. Carpena NT; Min YK; Lee BT ASAIO J; 2015; 61(1):78-86. PubMed ID: 25248041 [TBL] [Abstract][Full Text] [Related]
35. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801 [TBL] [Abstract][Full Text] [Related]
36. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold. Wu L; Zhang H; Zhang J; Ding J Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446 [TBL] [Abstract][Full Text] [Related]
37. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. Sui G; Yang X; Mei F; Hu X; Chen G; Deng X; Ryu S J Biomed Mater Res A; 2007 Aug; 82(2):445-54. PubMed ID: 17295252 [TBL] [Abstract][Full Text] [Related]
38. Biomimetic porous scaffolds made from poly(L-lactide)-g-chondroitin sulfate blend with poly(L-lactide) for cartilage tissue engineering. Lee CT; Huang CP; Lee YD Biomacromolecules; 2006 Jul; 7(7):2200-9. PubMed ID: 16827588 [TBL] [Abstract][Full Text] [Related]
39. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering. Zhang HX; Xiao GY; Wang X; Dong ZG; Ma ZY; Li L; Li YH; Pan X; Nie L J Biomed Mater Res A; 2015 Oct; 103(10):3250-8. PubMed ID: 25809455 [TBL] [Abstract][Full Text] [Related]
40. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. Gorna K; Gogolewski S J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]