These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1845859)

  • 1. Neutral proteases in regenerating bone.
    Einhorn TA; Majeska RJ
    Clin Orthop Relat Res; 1991 Jan; (262):286-97. PubMed ID: 1845859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutral protein-degrading enzymes in experimental fracture callus: a preliminary report.
    Einhorn TA; Hirschman A; Kaplan C; Nashed R; Devlin VJ; Warman J
    J Orthop Res; 1989; 7(6):792-805. PubMed ID: 2677285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of neutral proteoglycanase activity by growth plate zone.
    Ehrlich MG; Tebor GB; Armstrong AL; Mankin HJ
    J Orthop Res; 1985; 3(3):269-76. PubMed ID: 2411893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary culture of rat growth plate chondrocytes: an in vitro model of growth plate histotype, matrix vesicle biogenesis and mineralization.
    Garimella R; Bi X; Camacho N; Sipe JB; Anderson HC
    Bone; 2004 Jun; 34(6):961-70. PubMed ID: 15193542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth cartilage calcification and formation of bone trabeculae are late and dissociated events in the endochondral ossification of Rana catesbeiana.
    Felisbino SL; Carvalho HF
    Cell Tissue Res; 2001 Nov; 306(2):319-23. PubMed ID: 11702243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The first stage of transforming growth factor beta1 activation is release of the large latent complex from the extracellular matrix of growth plate chondrocytes by matrix vesicle stromelysin-1 (MMP-3).
    Maeda S; Dean DD; Gomez R; Schwartz Z; Boyan BD
    Calcif Tissue Int; 2002 Jan; 70(1):54-65. PubMed ID: 11907708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts.
    Xiao Z; Camalier CE; Nagashima K; Chan KC; Lucas DA; de la Cruz MJ; Gignac M; Lockett S; Issaq HJ; Veenstra TD; Conrads TP; Beck GR
    J Cell Physiol; 2007 Feb; 210(2):325-35. PubMed ID: 17096383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial purification and characterization of a proteoglycan-degrading neutral protease from bovine epiphyseal cartilage.
    Ehrlich MG; Armstrong AL; Mankin HJ
    J Orthop Res; 1984; 2(2):126-33. PubMed ID: 6387076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblasts and osteocytes express MMP2 and -8 and TIMP1, -2, and -3 along with extracellular matrix molecules during appositional bone formation.
    Hatori K; Sasano Y; Takahashi I; Kamakura S; Kagayama M; Sasaki K
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Apr; 277(2):262-71. PubMed ID: 15052653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Expression of transforming growth factor beta1 and insulin-like growth factor I in the regenerated bones after low frequency micro movement].
    Yu X; Zhang X; Zeng B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Jul; 20(7):685-9. PubMed ID: 16892796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization.
    Brandao-Burch A; Utting JC; Orriss IR; Arnett TR
    Calcif Tissue Int; 2005 Sep; 77(3):167-74. PubMed ID: 16075362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Buried alive: how osteoblasts become osteocytes.
    Franz-Odendaal TA; Hall BK; Witten PE
    Dev Dyn; 2006 Jan; 235(1):176-90. PubMed ID: 16258960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development, physiology, and cell activity of bone].
    de Baat P; Heijboer MP; de Baat C
    Ned Tijdschr Tandheelkd; 2005 Jul; 112(7):258-63. PubMed ID: 16047964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased levels of xylosyltransferase I correlate with the mineralization of the extracellular matrix during osteogenic differentiation of mesenchymal stem cells.
    Müller B; Prante C; Gastens M; Kuhn J; Kleesiek K; Götting C
    Matrix Biol; 2008 Mar; 27(2):139-49. PubMed ID: 17980567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast-like cells complete osteoclastic bone resorption and form new mineralized bone matrix in vitro.
    Mulari MT; Qu Q; Härkönen PL; Väänänen HK
    Calcif Tissue Int; 2004 Sep; 75(3):253-61. PubMed ID: 15148559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel angiogenic molecule produced at the time of chondrocyte hypertrophy during endochondral bone formation.
    Alini M; Marriott A; Chen T; Abe S; Poole AR
    Dev Biol; 1996 May; 176(1):124-32. PubMed ID: 8654888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leptin regulates chondrocyte differentiation and matrix maturation during endochondral ossification.
    Kishida Y; Hirao M; Tamai N; Nampei A; Fujimoto T; Nakase T; Shimizu N; Yoshikawa H; Myoui A
    Bone; 2005 Nov; 37(5):607-21. PubMed ID: 16039170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagenase and gelatinase production by calcifying growth plate chondrocytes.
    Brown RA; Kayser M; McLaughlin B; Weiss JB
    Exp Cell Res; 1993 Sep; 208(1):1-9. PubMed ID: 8395392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of parathyroid hormone-related peptide and insulin-like growth factor I during rat fracture healing.
    Okazaki K; Jingushi S; Ikenoue T; Urabe K; Sakai H; Iwamoto Y
    J Orthop Res; 2003 May; 21(3):511-20. PubMed ID: 12706025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair.
    McKee MD; Nanci A
    Microsc Res Tech; 1996 Feb; 33(2):141-64. PubMed ID: 8845514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.