BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18459001)

  • 1. Simultaneous measurements of ossicular velocity and intracochlear pressure leading to the cochlear input impedance in gerbil.
    de la Rochefoucauld O; Decraemer WF; Khanna SM; Olson ES
    J Assoc Res Otolaryngol; 2008 Jun; 9(2):161-77. PubMed ID: 18459001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scala vestibuli pressure and three-dimensional stapes velocity measured in direct succession in gerbil.
    Decraemer WF; de La Rochefoucauld O; Dong W; Khanna SM; Dirckx JJ; Olson ES
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2774-91. PubMed ID: 17550177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential intracochlear sound pressure measurements in normal human temporal bones.
    Nakajima HH; Dong W; Olson ES; Merchant SN; Ravicz ME; Rosowski JJ
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subharmonic distortion in ear canal pressure and intracochlear pressure and motion.
    Huang S; Dong W; Olson ES
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):461-71. PubMed ID: 22526734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Input impedance of the cochlea in cat.
    Lynch TJ; Nedzelnitsky V; Peake WT
    J Acoust Soc Am; 1982 Jul; 72(1):108-30. PubMed ID: 7108034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo impedance of the gerbil cochlear partition at auditory frequencies.
    Dong W; Olson ES
    Biophys J; 2009 Sep; 97(5):1233-43. PubMed ID: 19720011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of wide-band middle ear transmission in the Mongolian gerbil.
    Overstreet EH; Ruggero MA
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):261-70. PubMed ID: 11831800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT; Mattingly JK; Jenkins HA; Tollin DJ; Easter JR; Cass SP
    Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time measurement of stapes motion and intracochlear pressure during blast exposure.
    Bien AG; Jiang S; Gan RZ
    Hear Res; 2023 Mar; 429():108702. PubMed ID: 36669259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observing middle and inner ear mechanics with novel intracochlear pressure sensors.
    Olson ES
    J Acoust Soc Am; 1998 Jun; 103(6):3445-63. PubMed ID: 9637031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
    Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2013 Jul; 301():105-14. PubMed ID: 23159918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gerbil middle-ear sound transmission from 100 Hz to 60 kHz.
    Ravicz ME; Cooper NP; Rosowski JJ
    J Acoust Soc Am; 2008 Jul; 124(1):363-80. PubMed ID: 18646983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic input impedance of the stapes and cochlea in human temporal bones.
    Merchant SN; Ravicz ME; Rosowski JJ
    Hear Res; 1996 Aug; 97(1-2):30-45. PubMed ID: 8844184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Middle Ear Actuator Performance Determined From Intracochlear Pressure Measurements in a Single Cochlear Scala.
    Raufer S; Gamm UA; Grossöhmichen M; Lenarz T; Maier H
    Otol Neurotol; 2021 Jan; 42(1):e86-e93. PubMed ID: 33044336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical impedance measurements of cochlear structures using the four-electrode reflection-coefficient technique.
    Kumar G; Chokshi M; Richter CP
    Hear Res; 2010 Jan; 259(1-2):86-94. PubMed ID: 19857561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds.
    Robles L; Temchin AN; Fan YH; Ruggero MA
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):447-57. PubMed ID: 26068200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of complex stapes motion to cochlea activation.
    Eiber A; Huber AM; Lauxmann M; Chatzimichalis M; Sequeira D; Sim JH
    Hear Res; 2012 Feb; 284(1-2):82-92. PubMed ID: 22155337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of tympanic membrane perforation on middle ear transmission in gerbil.
    Stomackin G; Kidd S; Jung TT; Martin GK; Dong W
    Hear Res; 2019 Mar; 373():48-58. PubMed ID: 30583199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.