These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 18459059)
1. Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a Desulfovibrio species under anaerobic conditions. Arnett CM; Adrian NR Biodegradation; 2009 Feb; 20(1):15-26. PubMed ID: 18459059 [TBL] [Abstract][Full Text] [Related]
2. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) serves as a carbon and energy source for a mixed culture under anaerobic conditions. Adrian NR; Arnett CM Curr Microbiol; 2006 Aug; 53(2):129-34. PubMed ID: 16802206 [TBL] [Abstract][Full Text] [Related]
3. Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Zhao JS; Greer CW; Thiboutot S; Ampleman G; Hawari J Can J Microbiol; 2004 Feb; 50(2):91-6. PubMed ID: 15052310 [TBL] [Abstract][Full Text] [Related]
4. Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Adrian NR; Arnett CM Curr Microbiol; 2004 May; 48(5):332-40. PubMed ID: 15060728 [TBL] [Abstract][Full Text] [Related]
5. Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. Zhao JS; Spain J; Thiboutot S; Ampleman G; Greer C; Hawari J FEMS Microbiol Ecol; 2004 Sep; 49(3):349-57. PubMed ID: 19712285 [TBL] [Abstract][Full Text] [Related]
6. Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Zhao JS; Paquet L; Halasz A; Hawari J Appl Microbiol Biotechnol; 2003 Dec; 63(2):187-93. PubMed ID: 12827319 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone. Ronen Z; Yanovich Y; Goldin R; Adar E Chemosphere; 2008 Nov; 73(9):1492-8. PubMed ID: 18774159 [TBL] [Abstract][Full Text] [Related]
8. Anaerobic bioremediation of RDX by ovine whole rumen fluid and pure culture isolates. Eaton HL; Duringer JM; Murty LD; Craig AM Appl Microbiol Biotechnol; 2013 Apr; 97(8):3699-710. PubMed ID: 22688904 [TBL] [Abstract][Full Text] [Related]
9. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Thompson KT; Crocker FH; Fredrickson HL Appl Environ Microbiol; 2005 Dec; 71(12):8265-72. PubMed ID: 16332812 [TBL] [Abstract][Full Text] [Related]
11. Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms. Shen CF; Hawari JA; Paquet L; Ampleman G; Thiboutot S; Guiot SR Water Sci Technol; 2001; 43(3):291-8. PubMed ID: 11381919 [TBL] [Abstract][Full Text] [Related]
12. Effect of mycorrhizal fungi on the phytoremediation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Thompson PL; Polebitski AS Environ Sci Technol; 2010 Feb; 44(3):1112-5. PubMed ID: 20039668 [TBL] [Abstract][Full Text] [Related]
13. Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Fuller ME; Perreault N; Hawari J Lett Appl Microbiol; 2010 Sep; 51(3):313-8. PubMed ID: 20666987 [TBL] [Abstract][Full Text] [Related]
14. Phylogenetic and metabolic diversity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-transforming bacteria in strictly anaerobic mixed cultures enriched on RDX as nitrogen source. Zhao JS; Spain J; Hawari J FEMS Microbiol Ecol; 2003 Nov; 46(2):189-96. PubMed ID: 19719572 [TBL] [Abstract][Full Text] [Related]
15. A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene. Indest KJ; Crocker FH; Athow R J Microbiol Methods; 2007 Feb; 68(2):267-74. PubMed ID: 17010461 [TBL] [Abstract][Full Text] [Related]
16. Biotic and abiotic degradation of CL-20 and RDX in soils. Crocker FH; Thompson KT; Szecsody JE; Fredrickson HL J Environ Qual; 2005; 34(6):2208-16. PubMed ID: 16275722 [TBL] [Abstract][Full Text] [Related]
17. Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material. Kwon MJ; Finneran KT Biodegradation; 2010 Nov; 21(6):923-37. PubMed ID: 20424887 [TBL] [Abstract][Full Text] [Related]
18. Sustained and complete hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation in zero-valent iron simulated barriers under different microbial conditions. Shrout JD; Larese-Casanova P; Scherer MM; Alvarez PJ Environ Technol; 2005 Oct; 26(10):1115-26. PubMed ID: 16342534 [TBL] [Abstract][Full Text] [Related]
19. Identification of microbial populations assimilating nitrogen from RDX in munitions contaminated military training range soils by high sensitivity stable isotope probing. Andeer P; Stahl DA; Lillis L; Strand SE Environ Sci Technol; 2013 Sep; 47(18):10356-63. PubMed ID: 23909596 [TBL] [Abstract][Full Text] [Related]
20. Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Bernstein A; Adar E; Nejidat A; Ronen Z Biodegradation; 2011 Sep; 22(5):997-1005. PubMed ID: 21327803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]