BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 18459336)

  • 1. A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska.
    Tinner W; Bigler C; Gedye S; Gregory-Eaves I; Jones RT; Kaltenrieder P; Krähenbühl U; Hu FS
    Ecology; 2008 Mar; 89(3):729-43. PubMed ID: 18459336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climatic and land cover influences on the spatiotemporal dynamics of Holocene boreal fire regimes.
    Barrett CM; Kelly R; Higuera PE; Hu FS
    Ecology; 2013 Feb; 94(2):389-402. PubMed ID: 23691658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability.
    Hoecker TJ; Higuera PE; Kelly R; Hu FS
    Ecology; 2020 Sep; 101(9):e03096. PubMed ID: 32386341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.
    Kelly R; Chipman ML; Higuera PE; Stefanova I; Brubaker LB; Hu FS
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13055-60. PubMed ID: 23878258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drivers of Change in a 7300-Year Holocene Diatom Record from the Hemi-Boreal Region of Ontario, Canada.
    Beck KK; Medeiros AS; Finkelstein SA
    PLoS One; 2016; 11(8):e0159937. PubMed ID: 27532216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests.
    Brubaker LB; Higuera PE; Rupp TS; Olson MA; Anderson PM; Hu FS
    Ecology; 2009 Jul; 90(7):1788-801. PubMed ID: 19694128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks.
    Euskirchen ES; McGuire AD; Chapin FS; Yi S; Thompson CC
    Ecol Appl; 2009 Jun; 19(4):1022-43. PubMed ID: 19544741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica.
    Lozano-García Mdel S; Caballero M; Ortega B; Rodríguez A; Sosa S
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16200-3. PubMed ID: 17913875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of aridity and fire on holocene prairie communities in the eastern Prairie Peninsula.
    Nelson DM; Hu FS; Grimm EC; Curry BB; Slate JE
    Ecology; 2006 Oct; 87(10):2523-36. PubMed ID: 17089661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weak climatic control of stand-scale fire history during the late holocene.
    Gavin DG; Hu FS; Lertzman K; Corbett P
    Ecology; 2006 Jul; 87(7):1722-32. PubMed ID: 16922322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A late Holocene pollen record from proglacial Oblong Tarn, Mount Kenya.
    Courtney Mustaphi CJ; Gajewski K; Marchant R; Rosqvist G
    PLoS One; 2017; 12(9):e0184925. PubMed ID: 28926642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alder, Nitrogen, and Lake Ecology: Terrestrial-Aquatic Linkages in the Postglacial History of Lone Spruce Pond, Southwestern Alaska.
    Perren BB; Axford Y; Kaufman DS
    PLoS One; 2017; 12(1):e0169106. PubMed ID: 28076393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability in the expansion of trees and shrubs in boreal Alaska.
    Brodie JF; Roland CA; Stehn SE; Smirnova E
    Ecology; 2019 May; 100(5):e02660. PubMed ID: 30770560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegetation limits the impact of a warm climate on boreal wildfires.
    Girardin MP; Ali AA; Carcaillet C; Blarquez O; Hély C; Terrier A; Genries A; Bergeron Y
    New Phytol; 2013 Sep; 199(4):1001-1011. PubMed ID: 23691916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing.
    Wang JA; Sulla-Menashe D; Woodcock CE; Sonnentag O; Keeling RF; Friedl MA
    Glob Chang Biol; 2020 Feb; 26(2):807-822. PubMed ID: 31437337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geophysical features influence the climate change sensitivity of northern Wisconsin pine and oak forests.
    Tweiten MA; Calcote RR; Lynch EA; Hotchkiss SC; Schuurman GW
    Ecol Appl; 2015 Oct; 25(7):1984-96. PubMed ID: 26591463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia.
    Knorre AA; Kirdyanov AV; Vaganov EA
    Oecologia; 2006 Feb; 147(1):86-95. PubMed ID: 16163553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of C3 and C4 plants to middle-Holocene climatic variation near the prairie-forest ecotone of Minnesota.
    Nelson DM; Hu FS; Tian J; Stefanova I; Brown TA
    Proc Natl Acad Sci U S A; 2004 Jan; 101(2):562-7. PubMed ID: 14701908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change.
    Higuera PE; Brubaker LB; Anderson PM; Brown TA; Kennedy AT; Hu FS
    PLoS One; 2008 Mar; 3(3):e0001744. PubMed ID: 18320025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.