These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 18459336)
1. A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska. Tinner W; Bigler C; Gedye S; Gregory-Eaves I; Jones RT; Kaltenrieder P; Krähenbühl U; Hu FS Ecology; 2008 Mar; 89(3):729-43. PubMed ID: 18459336 [TBL] [Abstract][Full Text] [Related]
2. Climatic and land cover influences on the spatiotemporal dynamics of Holocene boreal fire regimes. Barrett CM; Kelly R; Higuera PE; Hu FS Ecology; 2013 Feb; 94(2):389-402. PubMed ID: 23691658 [TBL] [Abstract][Full Text] [Related]
3. Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability. Hoecker TJ; Higuera PE; Kelly R; Hu FS Ecology; 2020 Sep; 101(9):e03096. PubMed ID: 32386341 [TBL] [Abstract][Full Text] [Related]
4. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Kelly R; Chipman ML; Higuera PE; Stefanova I; Brubaker LB; Hu FS Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13055-60. PubMed ID: 23878258 [TBL] [Abstract][Full Text] [Related]
5. Drivers of Change in a 7300-Year Holocene Diatom Record from the Hemi-Boreal Region of Ontario, Canada. Beck KK; Medeiros AS; Finkelstein SA PLoS One; 2016; 11(8):e0159937. PubMed ID: 27532216 [TBL] [Abstract][Full Text] [Related]
6. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests. Brubaker LB; Higuera PE; Rupp TS; Olson MA; Anderson PM; Hu FS Ecology; 2009 Jul; 90(7):1788-801. PubMed ID: 19694128 [TBL] [Abstract][Full Text] [Related]
7. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks. Euskirchen ES; McGuire AD; Chapin FS; Yi S; Thompson CC Ecol Appl; 2009 Jun; 19(4):1022-43. PubMed ID: 19544741 [TBL] [Abstract][Full Text] [Related]
9. Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica. Lozano-García Mdel S; Caballero M; Ortega B; Rodríguez A; Sosa S Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16200-3. PubMed ID: 17913875 [TBL] [Abstract][Full Text] [Related]
10. The influence of aridity and fire on holocene prairie communities in the eastern Prairie Peninsula. Nelson DM; Hu FS; Grimm EC; Curry BB; Slate JE Ecology; 2006 Oct; 87(10):2523-36. PubMed ID: 17089661 [TBL] [Abstract][Full Text] [Related]
11. Weak climatic control of stand-scale fire history during the late holocene. Gavin DG; Hu FS; Lertzman K; Corbett P Ecology; 2006 Jul; 87(7):1722-32. PubMed ID: 16922322 [TBL] [Abstract][Full Text] [Related]
12. Impacts of pre-fire conifer density and wildfire severity on ecosystem structure and function at the forest-tundra ecotone. Walker XJ; Howard BK; Jean M; Johnstone JF; Roland C; Rogers BM; Schuur EAG; Solvik KK; Mack MC PLoS One; 2021; 16(10):e0258558. PubMed ID: 34710129 [TBL] [Abstract][Full Text] [Related]
13. A late Holocene pollen record from proglacial Oblong Tarn, Mount Kenya. Courtney Mustaphi CJ; Gajewski K; Marchant R; Rosqvist G PLoS One; 2017; 12(9):e0184925. PubMed ID: 28926642 [TBL] [Abstract][Full Text] [Related]
14. Alder, Nitrogen, and Lake Ecology: Terrestrial-Aquatic Linkages in the Postglacial History of Lone Spruce Pond, Southwestern Alaska. Perren BB; Axford Y; Kaufman DS PLoS One; 2017; 12(1):e0169106. PubMed ID: 28076393 [TBL] [Abstract][Full Text] [Related]
15. Variability in the expansion of trees and shrubs in boreal Alaska. Brodie JF; Roland CA; Stehn SE; Smirnova E Ecology; 2019 May; 100(5):e02660. PubMed ID: 30770560 [TBL] [Abstract][Full Text] [Related]
16. Vegetation limits the impact of a warm climate on boreal wildfires. Girardin MP; Ali AA; Carcaillet C; Blarquez O; Hély C; Terrier A; Genries A; Bergeron Y New Phytol; 2013 Sep; 199(4):1001-1011. PubMed ID: 23691916 [TBL] [Abstract][Full Text] [Related]
17. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing. Wang JA; Sulla-Menashe D; Woodcock CE; Sonnentag O; Keeling RF; Friedl MA Glob Chang Biol; 2020 Feb; 26(2):807-822. PubMed ID: 31437337 [TBL] [Abstract][Full Text] [Related]
18. Geophysical features influence the climate change sensitivity of northern Wisconsin pine and oak forests. Tweiten MA; Calcote RR; Lynch EA; Hotchkiss SC; Schuurman GW Ecol Appl; 2015 Oct; 25(7):1984-96. PubMed ID: 26591463 [TBL] [Abstract][Full Text] [Related]
19. Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia. Knorre AA; Kirdyanov AV; Vaganov EA Oecologia; 2006 Feb; 147(1):86-95. PubMed ID: 16163553 [TBL] [Abstract][Full Text] [Related]
20. Response of C3 and C4 plants to middle-Holocene climatic variation near the prairie-forest ecotone of Minnesota. Nelson DM; Hu FS; Tian J; Stefanova I; Brown TA Proc Natl Acad Sci U S A; 2004 Jan; 101(2):562-7. PubMed ID: 14701908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]