BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1845985)

  • 1. Flux ratios and pump stoichiometries at sites II and III in liver mitochondria. Effect of slips and leaks.
    Luvisetto S; Conti E; Buso M; Azzone GF
    J Biol Chem; 1991 Jan; 266(2):1034-42. PubMed ID: 1845985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupling of oxidative phosphorylation. 2. Alternative mechanisms: intrinsic uncoupling or decoupling?
    Pietrobon D; Luvisetto S; Azzone GF
    Biochemistry; 1987 Nov; 26(23):7339-47. PubMed ID: 2962636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncoupling of oxidative phosphorylation. 1. Protonophoric effects account only partially for uncoupling.
    Luvisetto S; Pietrobon D; Azzone GF
    Biochemistry; 1987 Nov; 26(23):7332-8. PubMed ID: 2827753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relative proton stoichiometries of the mitochondrial proton pumps are independent of the proton motive force.
    Brown GC
    J Biol Chem; 1989 Sep; 264(25):14704-9. PubMed ID: 2549030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria.
    Schönfeld P; Schild L; Kunz W
    Biochim Biophys Acta; 1989 Dec; 977(3):266-72. PubMed ID: 2556180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupling of oxidative phosphorylation in rat liver mitochondria by general anesthetics.
    Rottenberg H
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3313-7. PubMed ID: 6574486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of loss of thermodynamic control in mitochondria due to hyperthyroidism and temperature.
    Luvisetto S; Schmehl I; Intravaia E; Conti E; Azzone GF
    J Biol Chem; 1992 Aug; 267(22):15348-55. PubMed ID: 1639781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature of proton cycling during gramicidin uncoupling of oxidative phosphorylation.
    Luvisetto S; Azzone GF
    Biochemistry; 1989 Feb; 28(3):1100-8. PubMed ID: 2469464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiration in non-phosphorylating yeast mitochondria. Roles of non-ohmic proton conductance and intrinsic uncoupling.
    Ouhabi R; Rigoulet M; Lavie JL; Guérin B
    Biochim Biophys Acta; 1991 Nov; 1060(3):293-8. PubMed ID: 1751514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of chloroform on mitochondrial energy transduction.
    Chien LF; Brand MD
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):837-45. PubMed ID: 9003370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol.
    Rigoulet M; Devin A; Avéret N; Vandais B; Guérin B
    Eur J Biochem; 1996 Oct; 241(1):280-5. PubMed ID: 8898917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparative Study of the Action of Protonophore Uncouplers and Decoupling Agents as Inducers of Free Respiration in Mitochondria in States 3 and 4: Theoretical and Experimental Approaches.
    Samartsev VN; Semenova AA; Dubinin MV
    Cell Biochem Biophys; 2020 Jun; 78(2):203-216. PubMed ID: 32367259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local protons and uncoupling of aerobic and artificial delta muH-driven ATP synthesis.
    Luvisetto S; Azzone GF
    Biochemistry; 1989 Feb; 28(3):1109-16. PubMed ID: 2469465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of superoxide anion generation in intact mitochondria in the presence of lucigenin and cyanide.
    Yurkov IS; Kruglov AG; Evtodienko YV; Yaguzhinsky LS
    Biochemistry (Mosc); 2003 Dec; 68(12):1349-59. PubMed ID: 14756632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain.
    Marzulli D; La Piana G; Cafagno L; Fransvea E; Lofrumento NE
    Arch Biochem Biophys; 1995 May; 319(1):36-48. PubMed ID: 7771804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature of mitochondrial respiration and discrimination between membrane and pump properties.
    Canton M; Luvisetto S; Schmehl I; Azzone GF
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):477-81. PubMed ID: 7654185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of oligomycin-inhibited respiration of isolated rat liver mitochondria to perfluidone, a fluorinated arylalkylsulfonamide.
    Olorunsogo OO; Malomo SO
    Toxicology; 1985 Jun; 35(3):231-40. PubMed ID: 3160138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.