BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 18459956)

  • 1. Multicomponent simulations of contrasting redox environments at an LNAPL site.
    Miles B; Peter A; Teutsch G
    Ground Water; 2008; 46(5):727-42. PubMed ID: 18459956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation.
    Schreiber ME; Carey GR; Feinstein DT; Bahr JM
    J Contam Hydrol; 2004 Sep; 73(1-4):99-127. PubMed ID: 15336791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic.
    Vencelides Z; Sracek O; Prommer H
    J Contam Hydrol; 2007 Jan; 89(3-4):270-94. PubMed ID: 17070964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple method for calculating growth rates of petroleum hydrocarbon plumes.
    Bekins BA; Cozzarelli IM; Curtis GP
    Ground Water; 2005; 43(6):817-26. PubMed ID: 16324003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of recharge-induced geochemical change in a contaminated aquifer.
    McGuire JT; Long DT; Hyndman DW
    Ground Water; 2005; 43(4):518-30. PubMed ID: 16029178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.
    Scholl MA; Cozzarelli IM; Christenson SC
    J Contam Hydrol; 2006 Aug; 86(3-4):239-61. PubMed ID: 16677736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: practical implications for hydrological studies.
    Cassidy NJ
    J Contam Hydrol; 2007 Oct; 94(1-2):49-75. PubMed ID: 17601633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale modeling of reactive solute transport in fracture zones of granitic bedrocks.
    Molinero J; Samper J
    J Contam Hydrol; 2006 Jan; 82(3-4):293-318. PubMed ID: 16337025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A steady state redox zone approach for modeling the transport and degradation of xenobiotic organic compounds from a landfill site.
    Lønborg MJ; Engesgaard P; Bjerg PL; Rosbjerg D
    J Contam Hydrol; 2006 Oct; 87(3-4):191-210. PubMed ID: 16843568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vadose zone attenuation of organic compounds at a crude oil spill site - interactions between biogeochemical reactions and multicomponent gas transport.
    Molins S; Mayer KU; Amos RT; Bekins BA
    J Contam Hydrol; 2010 Mar; 112(1-4):15-29. PubMed ID: 19853961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate.
    Henderson TH; Mayer KU; Parker BL; Al TA
    J Contam Hydrol; 2009 May; 106(3-4):195-211. PubMed ID: 19361885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ.
    Brusseau ML; Nelson NT; Zhang Z; Blue JE; Rohrer J; Allen T
    J Contam Hydrol; 2007 Feb; 90(1-2):21-40. PubMed ID: 17049404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma.
    Cozzarelli IM; Böhlke JK; Masoner J; Breit GN; Lorah MM; Tuttle ML; Jaeschke JB
    Ground Water; 2011; 49(5):663-87. PubMed ID: 21314684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer.
    Thornton SF; Quigley S; Spence MJ; Banwart SA; Bottrell S; Lerner DN
    J Contam Hydrol; 2001 Dec; 53(3-4):233-67. PubMed ID: 11820472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground water recharge and flow characterization using multiple isotopes.
    Chowdhury AH; Uliana M; Wade S
    Ground Water; 2008; 46(3):426-36. PubMed ID: 18384592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogeological study of an anti-tank range.
    Mailloux M; Martel R; Gabriel U; Lefebvre R; Thiboutot S; Ampleman G
    J Environ Qual; 2008; 37(4):1468-76. PubMed ID: 18574178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integral quantification of contaminant mass flow rates in a contaminated aquifer: conditioning of the numerical inversion of concentration-time series.
    Herold M; Ptak T; Bayer-Raich M; Wendel T; Grathwohl P
    J Contam Hydrol; 2009 Apr; 106(1-2):29-38. PubMed ID: 19167131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin, Germany.
    Richter D; Massmann G; Taute T; Duennbier U
    J Contam Hydrol; 2009 May; 106(3-4):183-94. PubMed ID: 19371963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TREX: spatially distributed model to assess watershed contaminant transport and fate.
    Velleux ML; England JF; Julien PY
    Sci Total Environ; 2008 Oct; 404(1):113-28. PubMed ID: 18649925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.