BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18459964)

  • 1. In search of the microbe/mineral interface: quantitative analysis of bacteria on metal surfaces using vertical scanning interferometry.
    Waters MS; Sturm CA; El-Naggar MY; Luttge A; Udwadia FE; Cvitkovitch DG; Goodman SD; Nealson KH
    Geobiology; 2008 Jun; 6(3):254-62. PubMed ID: 18459964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of ionic strength, nutrients and pH on bacterial adhesion to metals.
    Sheng X; Ting YP; Pehkonen SO
    J Colloid Interface Sci; 2008 May; 321(2):256-64. PubMed ID: 18343395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force measurements of bacterial adhesion on metals using a cell probe atomic force microscope.
    Sheng X; Ting YP; Pehkonen SO
    J Colloid Interface Sci; 2007 Jun; 310(2):661-9. PubMed ID: 17321534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface nanocrystallization for bacterial control.
    Yu B; Lesiuk A; Davis E; Irvin RT; Li DY
    Langmuir; 2010 Jul; 26(13):10930-4. PubMed ID: 20433185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteria-surface interaction in the presence of proteins and surface attached poly(ethylene glycol) methacrylate chains.
    Tedjo C; Neoh KG; Kang ET; Fang N; Chan V
    J Biomed Mater Res A; 2007 Aug; 82(2):479-91. PubMed ID: 17295255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH.
    Lower SK; Hochella MF; Beveridge TJ
    Science; 2001 May; 292(5520):1360-3. PubMed ID: 11359008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano/microscale order affects the early stages of biofilm formation on metal surfaces.
    Díaz C; Schilardi PL; Salvarezza RC; de Mele MF
    Langmuir; 2007 Oct; 23(22):11206-10. PubMed ID: 17880247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry.
    Dheilly A; Linossier I; Darchen A; Hadjiev D; Corbel C; Alonso V
    Appl Microbiol Biotechnol; 2008 May; 79(1):157-64. PubMed ID: 18330564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp.
    Neal AL; Dublin SN; Taylor J; Bates DJ; Burns JL; Apkarian R; DiChristina TJ
    Biomacromolecules; 2007 Jan; 8(1):166-74. PubMed ID: 17206803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion of Shewanella oneidensis MR-1 to iron (Oxy)(Hydr)oxides: microcolony formation and isotherm.
    Zhang M; Ginn BR; Dichristina TJ; Stack AG
    Environ Sci Technol; 2010 Mar; 44(5):1602-9. PubMed ID: 20131792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.
    Volle CB; Ferguson MA; Aidala KE; Spain EM; Núñez ME
    Colloids Surf B Biointerfaces; 2008 Nov; 67(1):32-40. PubMed ID: 18815013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy of bacterial communities.
    Núñez ME; Martin MO; Chan PH; Duong LK; Sindhurakar AR; Spain EM
    Methods Enzymol; 2005; 397():256-68. PubMed ID: 16260296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial Phases of biofilm formation in Shewanella oneidensis MR-1.
    Thormann KM; Saville RM; Shukla S; Pelletier DA; Spormann AM
    J Bacteriol; 2004 Dec; 186(23):8096-104. PubMed ID: 15547283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early detection of oxidized surfaces using Shewanella oneidensis MR-1 as a tool.
    Waters MS; Salas EC; Goodman SD; Udwadia FE; Nealson KH
    Biofouling; 2009; 25(2):163-72. PubMed ID: 19165644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of microbial inhibition of calcite dissolution.
    Lüttge A; Conrad PG
    Appl Environ Microbiol; 2004 Mar; 70(3):1627-32. PubMed ID: 15006787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer at the microbe-mineral interface: a grand challenge in biogeochemistry.
    Fredrickson JK; Zachara JM
    Geobiology; 2008 Jun; 6(3):245-53. PubMed ID: 18498527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion.
    Arnold JW; Boothe DH; Suzuki O; Bailey GW
    J Microsc; 2004 Dec; 216(Pt 3):215-21. PubMed ID: 15566492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of episcopic differential interference contrast microscopy to identify bacterial biofilms on salad leaves and track colonization by Salmonella Thompson.
    Warner JC; Rothwell SD; Keevil CW
    Environ Microbiol; 2008 Apr; 10(4):918-25. PubMed ID: 18177375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of uranium(VI) removal by Shewanella oneidensis MR-1 in flow and batch reactors.
    Sani RK; Peyton BM; Dohnalkova A
    Water Res; 2008 Jun; 42(12):2993-3002. PubMed ID: 18468655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a simulated recirculating cooling-water system.
    Doğruöz N; Göksay D; Ilhan-Sungur E; Cotuk A
    J Basic Microbiol; 2009 Sep; 49 Suppl 1():S5-12. PubMed ID: 19455520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.