BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 18460784)

  • 1. Interaction of the molecular chaperone HtpG with uroporphyrinogen decarboxylase in the cyanobacterium Synechococcus elongatus PCC 7942.
    Saito M; Watanabe S; Yoshikawa H; Nakamoto H
    Biosci Biotechnol Biochem; 2008 May; 72(5):1394-7. PubMed ID: 18460784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the role of HtpG in the tetrapyrrole biosynthesis pathway of the cyanobacterium Synechococcus elongatus PCC 7942.
    Watanabe S; Kobayashi T; Saito M; Sato M; Nimura-Matsune K; Chibazakura T; Taketani S; Nakamoto H; Yoshikawa H
    Biochem Biophys Res Commun; 2007 Jan; 352(1):36-41. PubMed ID: 17107658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942.
    Sato T; Minagawa S; Kojima E; Okamoto N; Nakamoto H
    Mol Microbiol; 2010 May; 76(3):576-89. PubMed ID: 20345653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity.
    Minagawa S; Kondoh Y; Sueoka K; Osada H; Nakamoto H
    Biochem J; 2011 Apr; 435(1):237-46. PubMed ID: 21210767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive expression of small heat shock protein in an htpG disruptant of the Cyanobacterium Synechococcus sp. PCC 7942.
    Kojima K; Nakamoto H
    Curr Microbiol; 2005 May; 50(5):272-6. PubMed ID: 15886908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity.
    Yokoyama Y; Ohtaki A; Jantan I; Yohda M; Nakamoto H
    J Biochem; 2015 Mar; 157(3):161-8. PubMed ID: 25294885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Hsp90--desperately seeking clients.
    Buchner J
    Mol Microbiol; 2010 May; 76(3):540-4. PubMed ID: 20345652
    [No Abstract]   [Full Text] [Related]  

  • 8. Protection of psbAII transcript from ribonuclease degradation in vitro by DnaK2 and DnaJ2 chaperones of the cyanobacterium Synechococcus elongatus PCC 7942.
    Watanabe S; Sato M; Nimura-Matsune K; Chibazakura T; Yoshikawa H
    Biosci Biotechnol Biochem; 2007 Jan; 71(1):279-82. PubMed ID: 17213638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942.
    Kobayashi I; Watanabe S; Kanesaki Y; Shimada T; Yoshikawa H; Tanaka K
    Mol Microbiol; 2017 Apr; 104(2):260-277. PubMed ID: 28106321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of a small heat shock protein with light-harvesting cyanobacterial phycocyanins under stress conditions.
    Nakamoto H; Honma D
    FEBS Lett; 2006 May; 580(13):3029-34. PubMed ID: 16678174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-regulated chaperone function of cyanobacterial Hsp90 and Hsp70: implications for light/dark regulation.
    Akter T; Nakamoto H
    J Biochem; 2021 Dec; 170(4):463-471. PubMed ID: 33993259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The NtcA-regulated amtB gene is necessary for full methylammonium uptake activity in the cyanobacterium Synechococcus elongatus.
    Paz-Yepes J; Herrero A; Flores E
    J Bacteriol; 2007 Nov; 189(21):7791-8. PubMed ID: 17704220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HtpG plays a role in cold acclimation in cyanobacteria.
    Hossain MM; Nakamoto H
    Curr Microbiol; 2002 Apr; 44(4):291-6. PubMed ID: 11910501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role for the cyanobacterial HtpG in protection from oxidative stress.
    Hossain MM; Nakamoto H
    Curr Microbiol; 2003 Jan; 46(1):70-6. PubMed ID: 12432468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative control of the high light-inducible hliA gene and implications for the activities of the NblS sensor kinase in the cyanobacterium Synechococcus elongatus strain PCC 7942.
    Kappell AD; Bhaya D; van Waasbergen LG
    Arch Microbiol; 2006 Nov; 186(5):403-13. PubMed ID: 16897032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway.
    Yoshino T; Liang Y; Arai D; Maeda Y; Honda T; Muto M; Kakunaka N; Tanaka T
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1521-9. PubMed ID: 25527377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of Escherichia coli molecular chaperone HtpG with DnaA replication initiator DNA.
    Grudniak AM; Markowska K; Wolska KI
    Cell Stress Chaperones; 2015 Nov; 20(6):951-7. PubMed ID: 26246199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The region adjacent to the highly immunogenic site and shielded by the middle domain is responsible for self-oligomerization/client binding of the HSP90 molecular chaperone.
    Nemoto TK; Fukuma Y; Yamada S; Kobayakawa T; Ono T; Ohara-Nemoto Y
    Biochemistry; 2004 Jun; 43(23):7628-36. PubMed ID: 15182205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HtpG is essential for the thermal stress management in cyanobacteria.
    Tanaka N; Nakamoto H
    FEBS Lett; 1999 Sep; 458(2):117-23. PubMed ID: 10481048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel signal transduction protein P(II) variant from Synechococcus elongatus PCC 7942 indicates a two-step process for NAGK-P(II) complex formation.
    Fokina O; Chellamuthu VR; Zeth K; Forchhammer K
    J Mol Biol; 2010 Jun; 399(3):410-21. PubMed ID: 20399792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.