BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18460816)

  • 1. Functional improvements to beta-lactoglobulin by preparing an edible conjugate with cationic saccharide using microbial transglutaminase [corrected] (MTGase).
    Ikeuchi T; Aoki T; Yoshida T; Takahashi K; Hattori M
    Biosci Biotechnol Biochem; 2008 May; 72(5):1227-34. PubMed ID: 18460816
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Yoshida T; Hamaji I; Hashimoto T; Matsumoto T; Hattori M
    Cytotechnology; 2023 Apr; 75(2):143-151. PubMed ID: 36969573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced immunogenicity and endowed antimicrobial activity in β-lactoglobulin by preparing edible bioconjugate.
    Yoshida T; Ikeda R; Kawai S; Horiuchi K; Matsuo Y; Hattori M
    Cytotechnology; 2023 Feb; 75(1):39-47. PubMed ID: 36713066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional improvements in β-lactoglobulin by conjugating with soybean soluble polysaccharide.
    Inada N; Hayashi M; Yoshida T; Hattori M
    Biosci Biotechnol Biochem; 2015; 79(1):97-102. PubMed ID: 25315246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced immunogenicity of beta-lactoglobulin by conjugation with acidic oligosaccharides.
    Hattori M; Miyakawa S; Ohama Y; Kawamura H; Yoshida T; To-o K; Kuriki T; Takahashi K
    J Agric Food Chem; 2004 Jul; 52(14):4546-53. PubMed ID: 15237965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced immunogenicity of beta-lactoglobulin by conjugating with chitosan.
    Aoki T; Iskandar S; Yoshida T; Takahashi K; Hattori M
    Biosci Biotechnol Biochem; 2006 Oct; 70(10):2349-56. PubMed ID: 17031037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional changes in beta-lactoglobulin by conjugation with cationic saccharides.
    Hattori M; Numamoto K; Kobayashi K; Takahashi K
    J Agric Food Chem; 2000 Jun; 48(6):2050-6. PubMed ID: 10888497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of the immunogenicity of beta-lactoglobulin from cow's milk by conjugation with a dextran derivative.
    Nodake Y; Fukumoto S; Fukasawa M; Sakakibara R; Yamasaki N
    Biosci Biotechnol Biochem; 2010; 74(4):721-6. PubMed ID: 20378982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing site-specific glycosylation using protein engineering techniques reduces the immunogenicity of β-lactoglobulin.
    Tatsumi Y; Sasahara Y; Kohyama N; Ayano S; Endo M; Yoshida T; Yamada K; Totsuka M; Hattori M
    Biosci Biotechnol Biochem; 2012; 76(3):478-85. PubMed ID: 22451388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific effects of denaturation, hydrolysis and exposure to Lactococcus lactis on bovine beta-lactoglobulin transepithelial transport, antigenicity and allergenicity.
    Bernasconi E; Fritsché R; Corthésy B
    Clin Exp Allergy; 2006 Jun; 36(6):803-14. PubMed ID: 16776682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced immunogenicity of beta-lactoglobulin by conjugation with carboxymethyl dextran.
    Hattori M; Nagasawa K; Ohgata K; Sone N; Fukuda A; Matsuda H; Takahashi K
    Bioconjug Chem; 2000; 11(1):84-93. PubMed ID: 10639090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transglutaminase-mediated modification of glutamine and lysine residues in native bovine beta-lactoglobulin.
    Nieuwenhuizen WF; Dekker HL; Gröneveld T; de Koster CG; de Jong GA
    Biotechnol Bioeng; 2004 Feb; 85(3):248-58. PubMed ID: 14748079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers.
    Yi J; Lam TI; Yokoyama W; Cheng LW; Zhong F
    J Agric Food Chem; 2014 Sep; 62(35):8900-7. PubMed ID: 25131216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel sandwich enzyme-linked immunosorbent assay with covalently bound monoclonal antibody and gold probe for sensitive and rapid detection of bovine β-lactoglobulin.
    He S; Li X; Wu Y; Wu S; Wu Z; Yang A; Tong P; Yuan J; Gao J; Chen H
    Anal Bioanal Chem; 2018 Jun; 410(16):3693-3703. PubMed ID: 29654339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and immunological characterization of β-lactoglobulin-amylose conjugate.
    Nodake Y; Fukumoto S; Fukasawa M; Yamasaki N; Sakakibara R
    Biosci Biotechnol Biochem; 2011; 75(1):165-7. PubMed ID: 21228473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a H
    He S; Li X; Gao J; Tong P; Chen H
    J Sci Food Agric; 2018 Jan; 98(2):519-526. PubMed ID: 28620918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Uptake of Processed Bovine β-Lactoglobulin by Antigen Presenting Cells: Identification of Receptors and Implications for Allergenicity.
    Teodorowicz M; Zenker HE; Ewaz A; Tsallis T; Mauser A; Gensberger-Reigl S; de Jong NW; Hettinga KA; Wichers HJ; van Neerven RJJ; Savelkoul HFJ
    Mol Nutr Food Res; 2021 Apr; 65(8):e2000834. PubMed ID: 33559978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes in emulsion-bound bovine beta-lactoglobulin affect its proteolysis and immunoreactivity.
    Marengo M; Miriani M; Ferranti P; Bonomi F; Iametti S; Barbiroli A
    Biochim Biophys Acta; 2016 Jul; 1864(7):805-13. PubMed ID: 27085639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral tolerance and Treg cells are induced in BALB/c mice after gavage with bovine β-lactoglobulin.
    Adel-Patient K; Wavrin S; Bernard H; Meziti N; Ah-Leung S; Wal JM
    Allergy; 2011 Oct; 66(10):1312-21. PubMed ID: 21615416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced immunogenicity of beta-lactoglobulin by conjugation with carboxymethyl dextran differing in molecular weight.
    Kobayashi K; Hirano A; Ohta A; Yoshida T; Takahashi K; Hattori M
    J Agric Food Chem; 2001 Feb; 49(2):823-31. PubMed ID: 11262036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.