These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 18460876)
1. A metabonomic and proteomic analysis of changes in IMCD3 cells chronically adapted to hypertonicity. Klawitter J; Rivard CJ; Brown LM; Capasso JM; Almeida NE; Maunsbach AB; Pihakaski-Maunsbach K; Berl T; Leibfritz D; Christians U; Chan L Nephron Physiol; 2008; 109(1):p1-10. PubMed ID: 18460876 [TBL] [Abstract][Full Text] [Related]
2. Response of IMCD3 cells to hypertonic challenges as analyzed by electron microscopy. Pihakaski-Maunsbach K; Nonaka S; Vorum H; Maunsbach AB J Electron Microsc (Tokyo); 2010; 59(6):481-94. PubMed ID: 20670932 [TBL] [Abstract][Full Text] [Related]
3. Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells. Burger-Kentischer A; Müller E; März J; Fraek ML; Thurau K; Beck FX Kidney Int; 1999 Apr; 55(4):1417-25. PubMed ID: 10201006 [TBL] [Abstract][Full Text] [Related]
4. Expression of the calcium-binding protein S100A4 is markedly up-regulated by osmotic stress and is involved in the renal osmoadaptive response. Rivard CJ; Brown LM; Almeida NE; Maunsbach AB; Pihakaski-Maunsbach K; Andres-Hernando A; Capasso JM; Berl T J Biol Chem; 2007 Mar; 282(9):6644-52. PubMed ID: 17200116 [TBL] [Abstract][Full Text] [Related]
5. Silencing and overexpression of the gamma-subunit of Na-K-ATPase directly affect survival of IMCD3 cells in response to hypertonic stress. Capasso JM; Rivard CJ; Berl T Am J Physiol Renal Physiol; 2006 Dec; 291(6):F1142-7. PubMed ID: 16804105 [TBL] [Abstract][Full Text] [Related]
6. Kidney cell survival in high tonicity. Handler JS; Kwon HM Comp Biochem Physiol A Physiol; 1997 Jul; 117(3):301-6. PubMed ID: 9172386 [TBL] [Abstract][Full Text] [Related]
7. The gamma-subunit of Na-K-ATPase is incorporated into plasma membranes of mouse IMCD3 cells in response to hypertonicity. Pihakaski-Maunsbach K; Tokonabe S; Vorum H; Rivard CJ; Capasso JM; Berl T; Maunsbach AB Am J Physiol Renal Physiol; 2005 Apr; 288(4):F650-7. PubMed ID: 15572522 [TBL] [Abstract][Full Text] [Related]
8. Intracellular betaine substitutes for sorbitol in protecting renal medullary cells from hypertonicity. Moriyama T; Garcia-Perez A; Olson AD; Burg MB Am J Physiol; 1991 Apr; 260(4 Pt 2):F494-7. PubMed ID: 1901456 [TBL] [Abstract][Full Text] [Related]
9. Hypertonic stress increases claudin-4 expression and tight junction integrity in association with MUPP1 in IMCD3 cells. Lanaspa MA; Andres-Hernando A; Rivard CJ; Dai Y; Berl T Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15797-802. PubMed ID: 18840681 [TBL] [Abstract][Full Text] [Related]
10. Effect of Poria cocos on hypertonic stress-induced water channel expression and apoptosis in renal collecting duct cells. Lee SM; Lee YJ; Yoon JJ; Kang DG; Lee HS J Ethnopharmacol; 2012 May; 141(1):368-76. PubMed ID: 22414475 [TBL] [Abstract][Full Text] [Related]
11. Maturation of aldose reductase expression in the neonatal rat inner medulla. Schwartz GJ; Zavilowitz BJ; Radice AD; Garcia-Perez A; Sands JM J Clin Invest; 1992 Oct; 90(4):1275-83. PubMed ID: 1401064 [TBL] [Abstract][Full Text] [Related]
12. Regulation of gene expression by hypertonicity. Burg MB; Kwon ED; Kültz D Annu Rev Physiol; 1997; 59():437-55. PubMed ID: 9074772 [TBL] [Abstract][Full Text] [Related]
13. The tight junction protein, MUPP1, is up-regulated by hypertonicity and is important in the osmotic stress response in kidney cells. Lanaspa MA; Almeida NE; Andres-Hernando A; Rivard CJ; Capasso JM; Berl T Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13672-7. PubMed ID: 17690246 [TBL] [Abstract][Full Text] [Related]
14. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells. Burg MB J Exp Zool; 1994 Feb; 268(2):171-5. PubMed ID: 8301253 [TBL] [Abstract][Full Text] [Related]
15. Biochemical characterization and osmolytes in papillary collecting ducts from pig and dog kidneys. Boulanger Y; Legault P; Tejedor A; Vinay P; Theriault Y Can J Physiol Pharmacol; 1988 Oct; 66(10):1282-90. PubMed ID: 3240411 [TBL] [Abstract][Full Text] [Related]
16. Hypertonicity stimulates PGE2 signaling in the renal medulla by promoting EP3 and EP4 receptor expression. Kim JA; Sheen MR; Lee SD; Jung JY; Kwon HM Kidney Int; 2009 Feb; 75(3):278-84. PubMed ID: 18843255 [TBL] [Abstract][Full Text] [Related]
17. Cellular response to osmotic stress in the renal medulla. Beck FX; Burger-Kentischer A; Müller E Pflugers Arch; 1998 Nov; 436(6):814-27. PubMed ID: 9799394 [TBL] [Abstract][Full Text] [Related]
18. Adaptation of murine inner medullary collecting duct (IMCD3) cell cultures to hypertonicity. Capasso JM; Rivard CJ; Enomoto LM; Berl T Ann N Y Acad Sci; 2003 Apr; 986():410-5. PubMed ID: 12763858 [TBL] [Abstract][Full Text] [Related]
19. Inner-medullary organic osmolytes and inorganic electrolytes in K depletion. Beck FX; Müller E; Fraek ML; Dörge A; Thurau K Pflugers Arch; 2000 Feb; 439(4):471-6. PubMed ID: 10678744 [TBL] [Abstract][Full Text] [Related]
20. Modulation of hypertonicity-induced aquaporin-1 by sodium chloride, urea, betaine, and heat shock in murine renal medullary cells. Umenishi F; Yoshihara S; Narikiyo T; Schrier RW J Am Soc Nephrol; 2005 Mar; 16(3):600-7. PubMed ID: 15647343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]