BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 18461075)

  • 1. The ecology and biotechnology of sulphate-reducing bacteria.
    Muyzer G; Stams AJ
    Nat Rev Microbiol; 2008 Jun; 6(6):441-54. PubMed ID: 18461075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron corrosion by novel anaerobic microorganisms.
    Dinh HT; Kuever J; Mussmann M; Hassel AW; Stratmann M; Widdel F
    Nature; 2004 Feb; 427(6977):829-32. PubMed ID: 14985759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane formation from long-chain alkanes by anaerobic microorganisms.
    Zengler K; Richnow HH; Rosselló-Mora R; Michaelis W; Widdel F
    Nature; 1999 Sep; 401(6750):266-9. PubMed ID: 10499582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria.
    Rueter P; Rabus R; Wilkes H; Aeckersberg F; Rainey FA; Jannasch HW; Widdel F
    Nature; 1994 Dec; 372(6505):455-8. PubMed ID: 7984238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industrial applications of new sulphur biotechnology.
    Janssen AJ; Ruitenberg R; Buisman CJ
    Water Sci Technol; 2001; 44(8):85-90. PubMed ID: 11730141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioremediation. Anaerobes to the rescue.
    Lovley DR
    Science; 2001 Aug; 293(5534):1444-6. PubMed ID: 11520973
    [No Abstract]   [Full Text] [Related]  

  • 9. Bacteria from hydrocarbon seep areas growing on short-chain alkanes.
    Muyzer G; van der Kraan GM
    Trends Microbiol; 2008 Apr; 16(4):138-41. PubMed ID: 18328711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Anaerobic methane oxidation and sulfate reduction in bacterial mats of coral-like carbonate structures in the Black Sea].
    Pimenov NV; Ivanova AE
    Mikrobiologiia; 2005; 74(3):420-9. PubMed ID: 16119857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ; Kulnieks VI; Neculita CM
    Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review.
    Li X; Lan SM; Zhu ZP; Zhang C; Zeng GM; Liu YG; Cao WC; Song B; Yang H; Wang SF; Wu SH
    Ecotoxicol Environ Saf; 2018 Aug; 158():162-170. PubMed ID: 29684746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane as fuel for anaerobic microorganisms.
    Thauer RK; Shima S
    Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphite oxidation by sulphate reduction.
    Schink B; Friedrich M
    Nature; 2000 Jul; 406(6791):37. PubMed ID: 10894531
    [No Abstract]   [Full Text] [Related]  

  • 16. [Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery].
    Nazina TN; Grigor'ian AA; Shestakova NM; Babich TL; Ivoĭlov VS; Feng Q; Ni F; Wang J; She Y; Xiang T; Luo Z; Beliaev SS; Ivanov MV
    Mikrobiologiia; 2007; 76(3):329-39. PubMed ID: 17633408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria.
    Teclu D; Tivchev G; Laing M; Wallis M
    J Hazard Mater; 2009 Jan; 161(2-3):1157-65. PubMed ID: 18541372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Anti-corrosive effect of pesticides in soil corrosion conditions].
    Smykun NV; Tretiak AP; Kurmakova IN
    Mikrobiol Z; 2001; 63(4):85-90. PubMed ID: 11692682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How sulphate-reducing microorganisms cope with stress: lessons from systems biology.
    Zhou J; He Q; Hemme CL; Mukhopadhyay A; Hillesland K; Zhou A; He Z; Van Nostrand JD; Hazen TC; Stahl DA; Wall JD; Arkin AP
    Nat Rev Microbiol; 2011 Jun; 9(6):452-66. PubMed ID: 21572460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wine wastes as carbon source for biological treatment of acid mine drainage.
    Costa MC; Santos ES; Barros RJ; Pires C; Martins M
    Chemosphere; 2009 May; 75(6):831-6. PubMed ID: 19201010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.