These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 18461075)

  • 41. Microbial sulphate reduction at a low pH.
    Koschorreck M
    FEMS Microbiol Ecol; 2008 Jun; 64(3):329-42. PubMed ID: 18445022
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment.
    Yoshida H; Tokumoto H; Ishii K; Ishii R
    Bioresour Technol; 2009 Jun; 100(12):2933-9. PubMed ID: 19254834
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.
    Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A
    Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toxic effects of zinc on anaerobic microbiota from Zimapán Reservoir (Mexico).
    Vega-López A; Amora-Lazcano E; López-López E; Terrón O; Proal-Nájera JB
    Anaerobe; 2007 Apr; 13(2):65-73. PubMed ID: 17360200
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anaerobic treatment of sulphate-containing waste streams.
    Colleran E; Finnegan S; Lens P
    Antonie Van Leeuwenhoek; 1995; 67(1):29-46. PubMed ID: 7741527
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A thermodynamic assessment of possible substrates for sulphate-reducing bacteria.
    Wake LV; Christopher RK; Rickard PA; Andersen JE; Ralph BJ
    Aust J Biol Sci; 1977 Apr; 30(1-2):155-72. PubMed ID: 901304
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anaerobic dechlorinating bacteria.
    El Fantroussi S; Naveau H; Agathos SN
    Biotechnol Prog; 1998; 14(2):167-88. PubMed ID: 9548767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Distribution and activity of microorganisms in the deep repository for liquid radioactive waste at the Siberian Chemical Combine].
    Nazina TN; Luk'ianova EA; Zakharova EV; Ivoĭlov VS; Poltaraus AB; Kalmykov SN; Beliaev SS; Zubkov AA
    Mikrobiologiia; 2006; 75(6):836-48. PubMed ID: 17205810
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exocellular electron transfer in anaerobic microbial communities.
    Stams AJ; de Bok FA; Plugge CM; van Eekert MH; Dolfing J; Schraa G
    Environ Microbiol; 2006 Mar; 8(3):371-82. PubMed ID: 16478444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents.
    Byrne N; Strous M; Crépeau V; Kartal B; Birrien JL; Schmid M; Lesongeur F; Schouten S; Jaeschke A; Jetten M; Prieur D; Godfroy A
    ISME J; 2009 Jan; 3(1):117-23. PubMed ID: 18670398
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [The sulfate-reducing capacity of bacteria in the genus Pseudomonas].
    Kliushnikova TM; Chernyshenko DV; Kasatkina TP
    Mikrobiol Zh (1978); 1992; 54(2):49-54. PubMed ID: 1584088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anaerobic treatment of sulphate-rich wastewaters.
    Hulshoff Pol LW; Lens PN; Stams AJ; Lettinga G
    Biodegradation; 1998; 9(3-4):213-24. PubMed ID: 10022065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal.
    De Gusseme B; De Schryver P; De Cooman M; Verbeken K; Boeckx P; Verstraete W; Boon N
    FEMS Microbiol Ecol; 2009 Jan; 67(1):151-61. PubMed ID: 19120464
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aluminum and sulphate removal by a highly Al-resistant dissimilatory sulphate-reducing bacteria community.
    Martins M; Taborda R; Silva G; Assunção A; Matos AP; Costa MC
    Biodegradation; 2012 Sep; 23(5):693-703. PubMed ID: 22367464
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Formation of an acetic-acid type microbial metabolism pathway and its stability during the course of sulfate-reduction].
    Wang AJ; Ren NQ; Du DZ; Xu XW; Wu LH
    Huan Jing Ke Xue; 2004 Mar; 25(2):73-6. PubMed ID: 15202238
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sulphide oxidation to elemental sulphur in a membrane bioreactor: performance and characterization of the selected microbial sulphur-oxidizing community.
    Vannini C; Munz G; Mori G; Lubello C; Verni F; Petroni G
    Syst Appl Microbiol; 2008 Dec; 31(6-8):461-73. PubMed ID: 18814984
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.
    Meulepas RJ; Jagersma CG; Gieteling J; Buisman CJ; Stams AJ; Lens PN
    Biotechnol Bioeng; 2009 Oct; 104(3):458-70. PubMed ID: 19544305
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simulation of constituent processes of anaerobic degradation of organic matter by the "methane" model.
    Vavilin VA; Vasiliev VB; Rytov SV
    Antonie Van Leeuwenhoek; 1996 Jan; 69(1):15-23. PubMed ID: 8678475
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview.
    Matias PM; Pereira IA; Soares CM; Carrondo MA
    Prog Biophys Mol Biol; 2005 Nov; 89(3):292-329. PubMed ID: 15950057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.