These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 18461321)
1. Conditional chromosome splitting in Saccharomyces cerevisiae using the homing endonuclease PI-SceI. Yamagishi K; Sugiyama M; Kaneko Y; Harashima S Appl Microbiol Biotechnol; 2008 Jun; 79(4):699-706. PubMed ID: 18461321 [TBL] [Abstract][Full Text] [Related]
2. Stabilization of mini-chromosome segregation during mitotic growth by overexpression of YCR041W and its application to chromosome engineering in Saccharomyces cerevisiae. Sasano Y; Yamagishi K; Tanikawa M; Nakazawa T; Sugiyama M; Kaneko Y; Harashima S J Biosci Bioeng; 2015 May; 119(5):526-31. PubMed ID: 25454064 [TBL] [Abstract][Full Text] [Related]
3. Circular permutation of a synthetic eukaryotic chromosome with the telomerator. Mitchell LA; Boeke JD Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17003-10. PubMed ID: 25378705 [TBL] [Abstract][Full Text] [Related]
4. An endonuclease with multiple cutting sites, Endo.SceI, initiates genetic recombination at its cutting site in yeast mitochondria. Nakagawa K; Morishima N; Shibata T EMBO J; 1992 Jul; 11(7):2707-15. PubMed ID: 1628629 [TBL] [Abstract][Full Text] [Related]
5. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. Sugiyama M; Ikushima S; Nakazawa T; Kaneko Y; Harashima S Biotechniques; 2005 Jun; 38(6):909-14. PubMed ID: 16018552 [TBL] [Abstract][Full Text] [Related]
6. Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Lukacsovich T; Yang D; Waldman AS Nucleic Acids Res; 1994 Dec; 22(25):5649-57. PubMed ID: 7838718 [TBL] [Abstract][Full Text] [Related]
7. Use of the meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes. Fernández-MartÃnez LT; Bibb MJ Sci Rep; 2014 Nov; 4():7100. PubMed ID: 25403842 [TBL] [Abstract][Full Text] [Related]
8. New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. Rebuzzini P; Khoriauli L; Azzalin CM; Magnani E; Mondello C; Giulotto E DNA Repair (Amst); 2005 May; 4(5):546-55. PubMed ID: 15811627 [TBL] [Abstract][Full Text] [Related]
9. Enhanced targeted integration mediated by translocated I-SceI during the Agrobacterium mediated transformation of yeast. Rolloos M; Hooykaas PJ; van der Zaal BJ Sci Rep; 2015 Feb; 5():8345. PubMed ID: 25662162 [TBL] [Abstract][Full Text] [Related]
10. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Plessis A; Perrin A; Haber JE; Dujon B Genetics; 1992 Mar; 130(3):451-60. PubMed ID: 1551570 [TBL] [Abstract][Full Text] [Related]
11. A polymerase chain reaction-mediated yeast artificial chromosome-splitting technology for generating targeted yeast artificial chromosomes subclones. Kim YH; Sugiyama M; Kaneko Y; Fukui K; Kobayashi A; Harashima S Methods Mol Biol; 2006; 349():103-15. PubMed ID: 17071977 [TBL] [Abstract][Full Text] [Related]
12. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species. Posey KL; Koufopanou V; Burt A; Gimble FS Nucleic Acids Res; 2004; 32(13):3947-56. PubMed ID: 15280510 [TBL] [Abstract][Full Text] [Related]
13. Evolution of I-SceI homing endonucleases with increased DNA recognition site specificity. Joshi R; Ho KK; Tenney K; Chen JH; Golden BL; Gimble FS J Mol Biol; 2011 Jan; 405(1):185-200. PubMed ID: 21029741 [TBL] [Abstract][Full Text] [Related]
14. A versatile and general splitting technology for generating targeted YAC subclones. Kim Y; Sugiyama M; Yamagishi K; Kaneko Y; Fukui K; Kobayashi A; Harashima S Appl Microbiol Biotechnol; 2005 Nov; 69(1):65-70. PubMed ID: 15864580 [TBL] [Abstract][Full Text] [Related]
15. ATF/CREB sites present in sub-telomeric regions of Saccharomyces cerevisiae chromosomes are part of promoters and act as UAS/URS of highly conserved COS genes. Spode I; Maiwald D; Hollenberg CP; Suckow M J Mol Biol; 2002 May; 319(2):407-20. PubMed ID: 12051917 [TBL] [Abstract][Full Text] [Related]
16. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Choulika A; Perrin A; Dujon B; Nicolas JF Mol Cell Biol; 1995 Apr; 15(4):1968-73. PubMed ID: 7891691 [TBL] [Abstract][Full Text] [Related]
17. Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes. Ueda Y; Ikushima S; Sugiyama M; Matoba R; Kaneko Y; Matsubara K; Harashima S J Biosci Bioeng; 2012 Jun; 113(6):675-82. PubMed ID: 22382015 [TBL] [Abstract][Full Text] [Related]
18. PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae. Sugiyama M; Nakazawa T; Murakami K; Sumiya T; Nakamura A; Kaneko Y; Nishizawa M; Harashima S Appl Microbiol Biotechnol; 2008 Sep; 80(3):545-53. PubMed ID: 18677473 [TBL] [Abstract][Full Text] [Related]
19. Chimeras of the homing endonuclease PI-SceI and the homologous Candida tropicalis intein: a study to explore the possibility of exchanging DNA-binding modules to obtain highly specific endonucleases with altered specificity. Steuer S; Pingoud V; Pingoud A; Wende W Chembiochem; 2004 Feb; 5(2):206-13. PubMed ID: 14760742 [TBL] [Abstract][Full Text] [Related]
20. Targeted modification of a human beta-globin locus BAC clone using GET Recombination and an I-Scei counterselection cassette. Jamsai D; Orford M; Nefedov M; Fucharoen S; Williamson R; Ioannou PA Genomics; 2003 Jul; 82(1):68-77. PubMed ID: 12809677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]