These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 18461374)
21. Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Ratledge C; Kanagachandran K; Anderson AJ; Grantham DJ; Stephenson JC Lipids; 2001 Nov; 36(11):1241-6. PubMed ID: 11795857 [TBL] [Abstract][Full Text] [Related]
22. Bioremediation of Catechol and Concurrent Accumulation of Biocompounds by the Microalga Zou LG; Yao YT; Wen FF; Zhang X; Liu BT; Li DW; Yang YF; Yang WD; Balamurugan S; Li HY J Agric Food Chem; 2023 Jul; 71(26):10065-10074. PubMed ID: 37342893 [TBL] [Abstract][Full Text] [Related]
23. Effects of twenty standard amino acids on biochemical constituents, docosahexaenoic acid production and metabolic activity changes of Crypthecodinium cohnii. Safdar W; Zan X; Shamoon M; Sharif HR; Mukama O; Tang X; Song Y Bioresour Technol; 2017 Aug; 238():738-743. PubMed ID: 28433582 [TBL] [Abstract][Full Text] [Related]
24. Rewiring metabolic network by chemical modulator based laboratory evolution doubles lipid production in Crypthecodinium cohnii. Diao J; Song X; Cui J; Liu L; Shi M; Wang F; Zhang W Metab Eng; 2019 Jan; 51():88-98. PubMed ID: 30393203 [TBL] [Abstract][Full Text] [Related]
25. Biosynthesis of uniformly carbon isotope-labeled docosahexaenoic acid in Crypthecodinium cohnii. Song P; Kuryatov A; Axelsen PH AMB Express; 2020 Mar; 10(1):45. PubMed ID: 32162160 [TBL] [Abstract][Full Text] [Related]
27. Rewiring the Metabolic Network to Increase Docosahexaenoic Acid Productivity in Liu L; Diao J; Bi Y; Zeng L; Wang F; Chen L; Zhang W Front Microbiol; 2022; 13():824189. PubMed ID: 35308368 [TBL] [Abstract][Full Text] [Related]
28. Valorization of exhausted olive pomace for the production of omega-3 fatty acids by Crypthecodinium cohnii. Paz A; Karnaouri A; Templis CC; Papayannakos N; Topakas E Waste Manag; 2020 Dec; 118():435-444. PubMed ID: 32971378 [TBL] [Abstract][Full Text] [Related]
29. Mechanisms of Sodium-Acetate-Induced DHA Accumulation in a DHA-Producing Microalga, Li Y; Tian W; Fu Z; Ye W; Zhang X; Zhang Z; Sun D Mar Drugs; 2022 Aug; 20(8):. PubMed ID: 36005511 [TBL] [Abstract][Full Text] [Related]
30. Metabolomic analysis reveals mechanism of antioxidant butylated hydroxyanisole on lipid accumulation in Crypthecodinium cohnii. Sui X; Niu X; Shi M; Pei G; Li J; Chen L; Wang J; Zhang W J Agric Food Chem; 2014 Dec; 62(51):12477-84. PubMed ID: 25436856 [TBL] [Abstract][Full Text] [Related]
31. Development of a multi-stage continuous fermentation strategy for docosahexaenoic acid production by Schizochytrium sp. Guo DS; Ji XJ; Ren LJ; Yin FW; Sun XM; Huang H; Zhen G Bioresour Technol; 2018 Dec; 269():32-39. PubMed ID: 30149252 [TBL] [Abstract][Full Text] [Related]
32. Screening and transcriptomic analysis of Crypthecodinium cohnii mutants with high growth and lipid content using the acetyl-CoA carboxylase inhibitor sethoxydim. Liu J; Pei G; Diao J; Chen Z; Liu L; Chen L; Zhang W Appl Microbiol Biotechnol; 2017 Aug; 101(15):6179-6191. PubMed ID: 28674851 [TBL] [Abstract][Full Text] [Related]
33. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. Ling X; Guo J; Liu X; Zhang X; Wang N; Lu Y; Ng IS Bioresour Technol; 2015 May; 184():139-147. PubMed ID: 25451778 [TBL] [Abstract][Full Text] [Related]
34. Docosahexaenoic acid production of the marine microalga Isochrysis galbana cultivated on renewable substrates from food processing waste under CO Zheng H; Ge F; Song K; Yang Z; Li J; Yan F; Wu X; Zhang Q; Liu Y; Ruan R Sci Total Environ; 2022 Nov; 848():157654. PubMed ID: 35908707 [TBL] [Abstract][Full Text] [Related]
35. Breast meat traits of Muscovy ducks fed on a microalga (Crypthecodinium cohnii) meal supplemented diet. Schiavone A; Chiarini R; Marzoni M; Castillo A; Tassone S; Romboli I Br Poult Sci; 2007 Oct; 48(5):573-9. PubMed ID: 17952729 [TBL] [Abstract][Full Text] [Related]
36. Improved docosahexaenoic acid production in Aurantiochytrium by glucose limited pH-auxostat fed-batch cultivation. Janthanomsuk P; Verduyn C; Chauvatcharin S Bioresour Technol; 2015 Nov; 196():592-9. PubMed ID: 26298403 [TBL] [Abstract][Full Text] [Related]
37. Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Rosa SM; Soria MA; Vélez CG; Galvagno MA Bioresour Technol; 2010 Apr; 101(7):2367-74. PubMed ID: 20015637 [TBL] [Abstract][Full Text] [Related]
38. Cui J; Diao J; Sun T; Shi M; Liu L; Wang F; Chen L; Zhang W Front Microbiol; 2018; 9():956. PubMed ID: 29867861 [TBL] [Abstract][Full Text] [Related]
39. Growth condition optimization for docosahexaenoic acid (DHA) production by Moritella marina MP-1. Kautharapu KB; Rathmacher J; Jarboe LR Appl Microbiol Biotechnol; 2013 Apr; 97(7):2859-66. PubMed ID: 23111600 [TBL] [Abstract][Full Text] [Related]
40. Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. Hu H; Li JY; Pan XR; Zhang F; Ma LL; Wang HJ; Zeng RJ Sci Total Environ; 2019 Mar; 656():140-149. PubMed ID: 30504016 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]