These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18461487)

  • 1. Intracellular manipulation of chromatin using magnetic nanoparticles.
    Kanger JS; Subramaniam V; van Driel R
    Chromosome Res; 2008; 16(3):511-22. PubMed ID: 18461487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of nanomechanical properties of chromatin in living cells.
    de Vries AH; Krenn BE; van Driel R; Subramaniam V; Kanger JS
    Nano Lett; 2007 May; 7(5):1424-7. PubMed ID: 17451276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental techniques for study of chromatin mechanics in intact nuclei and living cells.
    Verstraeten VL; Lammerding J
    Chromosome Res; 2008; 16(3):499-510. PubMed ID: 18461486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Chromatin Structure with Magnetic Tweezers.
    Kaczmarczyk A; Brouwer TB; Pham C; Dekker NH; van Noort J
    Methods Mol Biol; 2018; 1814():297-323. PubMed ID: 29956240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic Tweezers in a Microplate Format.
    Dos Santos Á; Toseland CP
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35225277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subpiconewton dynamic force spectroscopy using magnetic tweezers.
    Kruithof M; Chien F; de Jager M; van Noort J
    Biophys J; 2008 Mar; 94(6):2343-8. PubMed ID: 18065448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope.
    Wu M; Yadav R; Pal N; Lu HP
    Rev Sci Instrum; 2017 Jul; 88(7):073703. PubMed ID: 28764529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.
    Neuman KC; Nagy A
    Nat Methods; 2008 Jun; 5(6):491-505. PubMed ID: 18511917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force Spectroscopy in Studying Infection.
    Zhou Z; Leake MC
    Adv Exp Med Biol; 2016; 915():307-27. PubMed ID: 27193551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Magnetic Tweezers and Micro-mirror Total Internal Reflection Fluorescence Microscope for Single-Molecule Manipulation and Visualization.
    Seol Y; Neuman KC
    Methods Mol Biol; 2018; 1665():297-316. PubMed ID: 28940076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic tweezers: development and use in single-molecule research.
    Gaire S; Fabian R; Pegg I; Sarkar A
    Biotechniques; 2022 Feb; 72(2):65-72. PubMed ID: 35037472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.
    Yang Y; Valentine MT
    Methods Cell Biol; 2013; 115():75-96. PubMed ID: 23973067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring cell and tissue mechanics with optical tweezers.
    Català-Castro F; Schäffer E; Krieg M
    J Cell Sci; 2022 Aug; 135(15):. PubMed ID: 35942913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro magnetic tweezers for nanomanipulation inside live cells.
    de Vries AH; Krenn BE; van Driel R; Kanger JS
    Biophys J; 2005 Mar; 88(3):2137-44. PubMed ID: 15556976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular magnetic tweezers for single-molecule characterizations of helicases.
    Kemmerich FE; Kasaciunaite K; Seidel R
    Methods; 2016 Oct; 108():4-13. PubMed ID: 27402355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells.
    Mas J; Richardson AC; Reihani SN; Oddershede LB; Berg-Sørensen K
    Phys Biol; 2013 Aug; 10(4):046006. PubMed ID: 23820071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective.
    Septiadi D; Crippa F; Moore TL; Rothen-Rutishauser B; Petri-Fink A
    Adv Mater; 2018 May; 30(19):e1704463. PubMed ID: 29315860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics.
    Hobson CM; Kern M; O'Brien ET; Stephens AD; Falvo MR; Superfine R
    Mol Biol Cell; 2020 Jul; 31(16):1788-1801. PubMed ID: 32267206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.