These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 18461586)
1. An Hg2+-gated chiral molecular switch created by using binaphthalene molecules with two anthracene units and two 1,3-dithiole-2-thione (1,3-dithiole-2-one) units. Wang C; Zhang D; Zhang G; Xiang J; Zhu D Chemistry; 2008; 14(18):5680-6. PubMed ID: 18461586 [TBL] [Abstract][Full Text] [Related]
2. Chiral molecular switches based on binaphthalene molecules with anthracene moieties: CD signal due to interchromophoric exciton coupling and modulation of the CD spectrum. Wang C; Zhu L; Xiang J; Yu Y; Zhang D; Shuai Z; Zhu D J Org Chem; 2007 Jun; 72(12):4306-12. PubMed ID: 17497922 [TBL] [Abstract][Full Text] [Related]
3. Ab initio determination of geometries and vibrational characteristics of building blocks of organic superconductors: 4,5-Ethylenedithio-1,3-dithiole-2-thione, and 4,5-ethylenedithio-1,3-dithiole-2-one. Jaiswal S; Singh D; Prasad RL; Yadav RA Spectrochim Acta A Mol Biomol Spectrosc; 2010 Aug; 76(3-4):297-310. PubMed ID: 20430691 [TBL] [Abstract][Full Text] [Related]
4. Binaphthalene molecules with tetrathiafulvalene units: CD spectrum modulation and new chiral molecular switches by reversible oxidation and reduction of tetrathiafulvalene units. Zhou Y; Zhang D; Zhu L; Shuai Z; Zhu D J Org Chem; 2006 Mar; 71(5):2123-30. PubMed ID: 16497001 [TBL] [Abstract][Full Text] [Related]
5. Structural and vibrational studies of molecular conductors using quantum mechanical methods: 1,3-Dithiole-2-thione, 1,3-dithiole-2-one, 1,3-dioxole-2-one and 1,3-dioxole-2-thione. Jaiswal S; Kushwaha A; Prasad R; Prasad RL; Yadav RA Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):16-25. PubMed ID: 19539519 [TBL] [Abstract][Full Text] [Related]
6. Tuning the CD spectrum and optical rotation value of a new binaphthalene molecule with two spiropyran units: mimicking the function of a molecular "AND" logic gate and a new chiral molecular switch. Zhou Y; Zhang D; Zhang Y; Tang Y; Zhu D J Org Chem; 2005 Aug; 70(16):6164-70. PubMed ID: 16050673 [TBL] [Abstract][Full Text] [Related]
7. Flow linear dichroism to probe binding of aromatic molecules and DNA to single-walled carbon nanotubes. Rajendra J; Baxendale M; Dit Rap LG; Rodger A J Am Chem Soc; 2004 Sep; 126(36):11182-8. PubMed ID: 15355099 [TBL] [Abstract][Full Text] [Related]
8. Axially chiral facial amphiphiles with a dihydronaphthopentaphene structure as molecular tweezers for SWNTs. Marquis R; Kulikiewicz K; Lebedkin S; Kappes MM; Mioskowski C; Meunier S; Wagner A Chemistry; 2009 Oct; 15(42):11187-96. PubMed ID: 19760727 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and novel 1,2-dithiole-3-thione congeners. Shin SM; Kim SG Mol Pharmacol; 2009 Jan; 75(1):242-53. PubMed ID: 18945820 [TBL] [Abstract][Full Text] [Related]
10. Naphthalene- and anthracene-based aromatic foldamers with iminodicarbonyl linkers: their stabilities and application to a chiral photochromic system using retro [4 + 4] cycloaddition. Masu H; Mizutani I; Kato T; Azumaya I; Yamaguchi K; Kishikawa K; Kohmoto S J Org Chem; 2006 Oct; 71(21):8037-44. PubMed ID: 17025292 [TBL] [Abstract][Full Text] [Related]
12. Expanding the registry of aromatic amide foldamers: folding, photochemistry and assembly using diaza-anthracene units. Berni E; Dolain C; Kauffmann B; Léger JM; Zhan C; Huc I J Org Chem; 2008 Apr; 73(7):2687-94. PubMed ID: 18331057 [TBL] [Abstract][Full Text] [Related]
13. Preparation of a spontaneous resolution chiral fluorescent system using 2-anthracenecarboxylic acid. Imai Y; Kamon K; Murata K; Harada T; Nakano Y; Sato T; Fujiki M; Kuroda R; Matsubara Y Org Biomol Chem; 2008 Oct; 6(19):3471-5. PubMed ID: 19082147 [TBL] [Abstract][Full Text] [Related]
14. Water/n-octanol partition coefficients of 1,2-dithiole-3-thiones. Bona M; Boudeville P; Zekri O; Christen MO; Burgot JL J Pharm Sci; 1995 Sep; 84(9):1107-12. PubMed ID: 8537890 [TBL] [Abstract][Full Text] [Related]
15. A new chiral probe for sulfate anion: UV, CD, fluorescence, and NMR spectral studies of 1:1 and 2:1 complex formation and structure of chiral guanidinium-p-dimethylaminobenzoate conjugate with sulfate anion. Kobiro K; Inoue Y J Am Chem Soc; 2003 Jan; 125(2):421-7. PubMed ID: 12517154 [TBL] [Abstract][Full Text] [Related]
16. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol. Wei G; Zhang S; Dai C; Quan Y; Cheng Y; Zhu C Chemistry; 2013 Nov; 19(47):16066-71. PubMed ID: 24123510 [TBL] [Abstract][Full Text] [Related]
18. A serendipitous one-step conversion of 3H-1,2-dithiole-3-thione to (E)-3-[1-(alkylthio)alkylidene]-3H-1,2-dithiole: an experimental and theoretical study. Couto M; Cabrera M; Echeverría GA; Piro OE; González M; Cerecetto H Mol Divers; 2014 May; 18(2):285-94. PubMed ID: 24420794 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopy characterization of anthracene in SDS/BA/H2O system. Xu H; Liu Q Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):243-6. PubMed ID: 17804283 [TBL] [Abstract][Full Text] [Related]
20. Anthracene derivatives bearing thiourea and glucopyranosyl groups for the highly selective chiral recognition of amino acids: opposite chiral selectivities from similar binding units. Kim YK; Lee HN; Singh NJ; Choi HJ; Xue JY; Kim KS; Yoon J; Hyun MH J Org Chem; 2008 Jan; 73(1):301-4. PubMed ID: 18052393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]