These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18461603)

  • 1. A pathway for predation in the brain of the barn owl (Tyto alba): projections of the gracile nucleus to the "claw area" of the rostral wulst via the dorsal thalamus.
    Wild JM; Kubke MF; Peña JL
    J Comp Neurol; 2008 Jul; 509(2):156-66. PubMed ID: 18461603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonotopic and somatotopic representation in the nucleus basalis of the barn owl, Tyto alba.
    Wild JM; Kubke MF; Carr CE
    Brain Behav Evol; 2001 Jan; 57(1):39-62. PubMed ID: 11359047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatosensory areas in the telencephalon of the pigeon. II. Spinal pathways and afferent connections.
    Funke K
    Exp Brain Res; 1989; 76(3):620-38. PubMed ID: 2792249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ascending projections of the nuclei of the descending trigeminal tract (nTTD) in the zebra finch (Taeniopygia guttata).
    Faunes M; Wild JM
    J Comp Neurol; 2017 Sep; 525(13):2832-2846. PubMed ID: 28543449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rostral wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract.
    Wild JM; Williams MN
    J Comp Neurol; 2000 Jan; 416(4):429-50. PubMed ID: 10660876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple maps and activity-dependent representational plasticity in the anterior Wulst of the adult barn owl (Tyto alba).
    Manger PR; Elston GN; Pettigrew JD
    Eur J Neurosci; 2002 Aug; 16(4):743-50. PubMed ID: 12270050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and the burrowing owl, Speotyto cunicularia.
    Bravo H; Pettigrew JD
    J Comp Neurol; 1981 Jul; 199(3):419-41. PubMed ID: 7263955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Anatomical study of the afferent pathways of the rostral telencephalon in the Gallus domesticus chick].
    Miceli D; Peyrichoux J; Repérant J; Weidner C
    J Hirnforsch; 1980; 21(6):627-46. PubMed ID: 7229347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The avian somatosensory system: the pathway from wing to Wulst in a passerine (Chloris chloris).
    Wild JM
    Brain Res; 1997 Jun; 759(1):122-34. PubMed ID: 9219870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Telencephalic ascending gustatory system in a cichlid fish, Oreochromis (Tilapia) niloticus.
    Yoshimoto M; Albert JS; Sawai N; Shimizu M; Yamamoto N; Ito H
    J Comp Neurol; 1998 Mar; 392(2):209-26. PubMed ID: 9512270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Afferent and efferent projections of the dorsal anterior thalamic nuclei in the lizard Podarcis hispanica (Sauria, Lacertidae).
    Desfilis E; Font E; Belekhova M; Kenigfest N
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):447-50. PubMed ID: 11923008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projections of the dorsolateral anterior complex and adjacent thalamic nuclei upon the visual Wulst in the pigeon.
    Miceli D; Marchand L; Repérant J; Rio JP
    Brain Res; 1990 Jun; 518(1-2):317-23. PubMed ID: 1697211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a possible avian dorsal thalamic region comparable to the mammalian ventral anterior, ventral lateral, and oral ventroposterolateral nuclei.
    Medina L; Veenman CL; Reiner A
    J Comp Neurol; 1997 Jul; 384(1):86-108. PubMed ID: 9214542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat.
    Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT
    J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intratelencephalic projections of the visual wulst in pigeons (Columba livia).
    Shimizu T; Cox K; Karten HJ
    J Comp Neurol; 1995 Sep; 359(4):551-72. PubMed ID: 7499547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial coding in the hippocampus and hyperpallium of flying owls.
    Agarwal A; Sarel A; Derdikman D; Ulanovsky N; Gutfreund Y
    Proc Natl Acad Sci U S A; 2023 Jan; 120(5):e2212418120. PubMed ID: 36693104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The avian somatosensory system: connections of regions of body representation in the forebrain of the pigeon.
    Wild JM
    Brain Res; 1987 Jun; 412(2):205-23. PubMed ID: 3300850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Telencephalic projections to the nucleus of the basal optic root and pretectal nucleus lentiformis mesencephali in pigeons.
    Wylie DR; Ogilvie CJ; Crowder NA; Barkley RR; Winship IR
    Vis Neurosci; 2005; 22(2):237-47. PubMed ID: 15935115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of the afferent projections to the Wulst in the pigeon.
    Bagnoli P; Burkhalter A
    J Comp Neurol; 1983 Feb; 214(1):103-13. PubMed ID: 6841672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of stereopsis and the Wulst in caprimulgiform birds: A comparative analysis.
    Iwaniuk AN; Wylie DR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1313-26. PubMed ID: 16944165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.