These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 18461772)

  • 21. Chemodiversity of Cyanobacterial Toxins Driven by Future Scenarios of Climate Warming and Eutrophication.
    Yang Y; Wang H; Yan S; Wang T; Zhang P; Zhang H; Wang H; Hansson LA; Xu J
    Environ Sci Technol; 2023 Aug; 57(32):11767-11778. PubMed ID: 37535835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climate warming and heat waves alter harmful cyanobacterial blooms along the benthic-pelagic interface.
    Urrutia-Cordero P; Zhang H; Chaguaceda F; Geng H; Hansson LA
    Ecology; 2020 Jul; 101(7):e03025. PubMed ID: 32083737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental warming promotes phytoplankton species sorting towards cyanobacterial blooms and leads to potential changes in ecosystem functioning.
    Moresco GA; Dias JD; Cabrera-Lamanna L; Baladán C; Bizic M; Rodrigues LC; Meerhoff M
    Sci Total Environ; 2024 May; 924():171621. PubMed ID: 38467252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactive effects of climate change with nutrients, mercury, and freshwater acidification on key taxa in the North Atlantic Landscape Conservation Cooperative region.
    Pinkney AE; Driscoll CT; Evers DC; Hooper MJ; Horan J; Jones JW; Lazarus RS; Marshall HG; Milliken A; Rattner BA; Schmerfeld J; Sparling DW
    Integr Environ Assess Manag; 2015 Jul; 11(3):355-69. PubMed ID: 25556986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxic cyanobacteria in Florida waters.
    Burns J
    Adv Exp Med Biol; 2008; 619():127-37. PubMed ID: 18461767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adding climate change to the mix: responses of aquatic ectotherms to the combined effects of eutrophication and warming.
    Rodgers EM
    Biol Lett; 2021 Oct; 17(10):20210442. PubMed ID: 34699738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interaction between cyanobacteria and zooplankton in a more eutrophic world.
    Ger KA; Urrutia-Cordero P; Frost PC; Hansson LA; Sarnelle O; Wilson AE; Lürling M
    Harmful Algae; 2016 Apr; 54():128-144. PubMed ID: 28073472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs.
    Yang J; Lv H; Yang J; Liu L; Yu X; Chen H
    Sci Total Environ; 2016 Jul; 557-558():445-52. PubMed ID: 27016690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is the Cyanobacterial Bloom Composition Shifting Due to Climate Forcing or Nutrient Changes? Example of a Shallow Eutrophic Reservoir.
    Le Moal M; Pannard A; Brient L; Richard B; Chorin M; Mineaud E; Wiegand C
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34068425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyanobacterial dominance and succession: Factors, mechanisms, predictions, and managements.
    Wang Z; Akbar S; Sun Y; Gu L; Zhang L; Lyu K; Huang Y; Yang Z
    J Environ Manage; 2021 Nov; 297():113281. PubMed ID: 34274765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological production and eutrophication of Baltic Sea estuarine ecosystems: the Curonian and Vistula Lagoons.
    Aleksandrov SV
    Mar Pollut Bull; 2010; 61(4-6):205-10. PubMed ID: 20385330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyanobacteria blooms: effects on aquatic ecosystems.
    Havens KE
    Adv Exp Med Biol; 2008; 619():733-47. PubMed ID: 18461790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-Halamine Derivatized Nanoparticles with Selective Cyanocidal Activity: Potential for Targeted Elimination of Harmful Cyanobacterial Blooms.
    Sadhasivam G; Gelber C; Zakin V; Margel S; Shapiro OH
    Environ Sci Technol; 2019 Aug; 53(15):9160-9170. PubMed ID: 31328506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management.
    Li X; Huang T; Ma W; Sun X; Zhang H
    Sci Total Environ; 2015 Jul; 521-522():27-36. PubMed ID: 25828409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overview of key phytoplankton toxins and their recent occurrence in the North and Baltic Seas.
    Luckas B; Dahlmann J; Erler K; Gerdts G; Wasmund N; Hummert C; Hansen PD
    Environ Toxicol; 2005 Feb; 20(1):1-17. PubMed ID: 15712332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of UV radiation on aquatic ecosystems and interactions with climate change.
    Häder DP; Helbling EW; Williamson CE; Worrest RC
    Photochem Photobiol Sci; 2011 Feb; 10(2):242-60. PubMed ID: 21253662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change.
    Häder DP; Kumar HD; Smith RC; Worrest RC
    Photochem Photobiol Sci; 2007 Mar; 6(3):267-85. PubMed ID: 17344962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bloom Dynamics of Cyanobacteria and Their Toxins: Environmental Health Impacts and Mitigation Strategies.
    Rastogi RP; Madamwar D; Incharoensakdi A
    Front Microbiol; 2015; 6():1254. PubMed ID: 26635737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Harmful cyanobacterial blooms: causes, consequences, and controls.
    Paerl HW; Otten TG
    Microb Ecol; 2013 May; 65(4):995-1010. PubMed ID: 23314096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria.
    Elliott JA
    Water Res; 2012 Apr; 46(5):1364-71. PubMed ID: 22244968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.