These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 18461973)
1. Surface plasmon resonance study of protein-carbohydrate interactions using biotinylated sialosides. Linman MJ; Taylor JD; Yu H; Chen X; Cheng Q Anal Chem; 2008 Jun; 80(11):4007-13. PubMed ID: 18461973 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and characterization of a sialoside-based carbohydrate microarray biointerface for protein binding analysis with surface plasmon resonance imaging. Linman MJ; Yu H; Chen X; Cheng Q ACS Appl Mater Interfaces; 2009 Aug; 1(8):1755-62. PubMed ID: 20355792 [TBL] [Abstract][Full Text] [Related]
3. Surface plasmon resonance imaging analysis of protein binding to a sialoside-based carbohydrate microarray. Linman MJ; Yu H; Chen X; Cheng Q Methods Mol Biol; 2012; 808():183-94. PubMed ID: 22057526 [TBL] [Abstract][Full Text] [Related]
4. Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR). Krotkiewska B; Pasek M; Krotkiewski H Acta Biochim Pol; 2002; 49(2):481-90. PubMed ID: 12362990 [TBL] [Abstract][Full Text] [Related]
5. Monitoring of influenza virus hemagglutinin in process samples using weak affinity ligands and surface plasmon resonance. Mandenius CF; Wang R; Aldén A; Bergström G; Thébault S; Lutsch C; Ohlson S Anal Chim Acta; 2008 Aug; 623(1):66-75. PubMed ID: 18611459 [TBL] [Abstract][Full Text] [Related]
6. Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures. Chandrasekaran EV; Xue J; Xia J; Khaja SD; Piskorz CF; Locke RD; Neelamegham S; Matta KL Glycoconj J; 2016 Oct; 33(5):819-36. PubMed ID: 27318477 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance. Haseley SR; Talaga P; Kamerling JP; Vliegenthart JF Anal Biochem; 1999 Oct; 274(2):203-10. PubMed ID: 10527517 [TBL] [Abstract][Full Text] [Related]
8. Highly sensitive detection of protein toxins by surface plasmon resonance with biotinylation-based inline atom transfer radical polymerization amplification. Liu Y; Dong Y; Jauw J; Linman MJ; Cheng Q Anal Chem; 2010 May; 82(9):3679-85. PubMed ID: 20384298 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins. Knibbs RN; Goldstein IJ; Ratcliffe RM; Shibuya N J Biol Chem; 1991 Jan; 266(1):83-8. PubMed ID: 1985926 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of carbohydrate epitopes for surface plasmon resonance using the Staudinger ligation. Loka RS; Cairo CW Carbohydr Res; 2010 Dec; 345(18):2641-7. PubMed ID: 20971453 [TBL] [Abstract][Full Text] [Related]
11. Versatile strategy for the synthesis of biotin-labelled glycans, their immobilization to establish a bioactive surface and interaction studies with a lectin on a biochip. Muñoz FJ; Rumbero A; Sinisterra JV; Santos JI; André S; Gabius HJ; Jiménez-Barbero J; Hernáiz MJ Glycoconj J; 2008 Oct; 25(7):633-46. PubMed ID: 18347977 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the interaction between lectins and tetra- and tri-saccharide mimics of the Sd(a) determinant by surface plasmon resonance detection. Jiménez Blanco JL; Haseley SR; Kamerling JP; Vliegenthart JF Biochimie; 2001 Jul; 83(7):653-8. PubMed ID: 11522394 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of carbohydrate binding properties of Sambucus nigra lectins and ribosome-inactivating proteins. Shang C; Van Damme EJ Glycoconj J; 2014 Jul; 31(5):345-54. PubMed ID: 24853865 [TBL] [Abstract][Full Text] [Related]
14. Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Karamanska R; Clarke J; Blixt O; Macrae JI; Zhang JQ; Crocker PR; Laurent N; Wright A; Flitsch SL; Russell DA; Field RA Glycoconj J; 2008 Jan; 25(1):69-74. PubMed ID: 17574526 [TBL] [Abstract][Full Text] [Related]
15. Human zona pellucida recognition associated with removal of sialic acid from human sperm surface. Lassalle B; Testart J J Reprod Fertil; 1994 Aug; 101(3):703-11. PubMed ID: 7966029 [TBL] [Abstract][Full Text] [Related]
16. Use of a biosensor based on surface plasmon resonance and biotinyl glycans for analysis of sugar binding specificities of lectins. Shinohara Y; Sota H; Kim F; Shimizu M; Gotoh M; Tosu M; Hasegawa Y J Biochem; 1995 May; 117(5):1076-82. PubMed ID: 8586622 [TBL] [Abstract][Full Text] [Related]
17. Surface plasmon resonance imaging studies of protein-carbohydrate interactions. Smith EA; Thomas WD; Kiessling LL; Corn RM J Am Chem Soc; 2003 May; 125(20):6140-8. PubMed ID: 12785845 [TBL] [Abstract][Full Text] [Related]
18. Determination of the sialic acid linkage specificity of sialidases using lectins in a solid phase assay. Rogerieux F; Belaise M; Terzidis-Trabelsi H; Greffard A; Pilatte Y; Lambré CR Anal Biochem; 1993 Jun; 211(2):200-4. PubMed ID: 7686353 [TBL] [Abstract][Full Text] [Related]