BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18461981)

  • 1. Site-specific modification of Candida antarctica lipase B via residue-specific incorporation of a non-canonical amino acid.
    Schoffelen S; Lambermon MH; van Eldijk MB; van Hest JC
    Bioconjug Chem; 2008 Jun; 19(6):1127-31. PubMed ID: 18461981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. trans,trans-2,4-Hexadiene incorporation on enzymes for site-specific immobilization and fluorescent labeling.
    Filice M; Romero O; Guisan JM; Palomo JM
    Org Biomol Chem; 2011 Aug; 9(15):5535-40. PubMed ID: 21695340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites.
    Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF
    J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption.
    Foresti ML; Ferreira ML
    Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features.
    Liljeblad A; Kallio P; Vainio M; Niemi J; Kanerva LT
    Org Biomol Chem; 2010 Feb; 8(4):886-95. PubMed ID: 20135048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation.
    Ericsson DJ; Kasrayan A; Johansson P; Bergfors T; Sandström AG; Bäckvall JE; Mowbray SL
    J Mol Biol; 2008 Feb; 376(1):109-19. PubMed ID: 18155238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the catalytic activity of Candida antarctica lipase B by circular permutation.
    Qian Z; Lutz S
    J Am Chem Soc; 2005 Oct; 127(39):13466-7. PubMed ID: 16190688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase.
    James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P
    Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of aliphatic poly(thioester) by the lipase-catalyzed direct polycondensation of 11-mercaptoundecanoic acid.
    Kato M; Toshima K; Matsumura S
    Biomacromolecules; 2005; 6(4):2275-80. PubMed ID: 16004472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipase-mediated stereoselective hydrolysis of stampidine and other phosphoramidate derivatives of stavudine.
    Venkatachalam TK; Samuel P; Li G; Qazi S; Mao C; Pendergrass S; Uckun FM
    Bioorg Med Chem; 2004 Jun; 12(12):3371-81. PubMed ID: 15158806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantiopure derivatives of 1,2-alkanediols: substrate requirements of lipase B from Candida antarctica.
    Jacobsen EE; Hoff BH; Anthonsen T
    Chirality; 2000 Oct; 12(9):654-9. PubMed ID: 10984738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic synthesis of fluorinated polyesters.
    Mesiano AJ; Beckman EJ; Russell AJ
    Biotechnol Prog; 2000; 16(1):64-8. PubMed ID: 10662491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of N-terminal unnatural amino acids in recombinant human interferon-beta in Escherichia coli.
    Wang A; Winblade Nairn N; Johnson RS; Tirrell DA; Grabstein K
    Chembiochem; 2008 Jan; 9(2):324-30. PubMed ID: 18098265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The first direct enzymatic hydrolysis of alicyclic beta-amino esters: a route to enantiopure cis and trans beta-amino acids.
    Forró E; Fülöp F
    Chemistry; 2007; 13(22):6397-401. PubMed ID: 17492820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance.
    Fernández-Lorente G; Palomo JM; Mateo C; Munilla R; Ortiz C; Cabrera Z; Guisán JM; Fernandez-Lafuente R
    Biomacromolecules; 2006 Sep; 7(9):2610-5. PubMed ID: 16961324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoenzymatic synthesis of rivastigmine based on lipase-catalyzed processes.
    Mangas-Sánchez J; Rodríguez-Mata M; Busto E; Gotor-Fernández V; Gotor V
    J Org Chem; 2009 Aug; 74(15):5304-10. PubMed ID: 19555095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling and its experimental verification for the catalytic mechanism of Candida antarctica lipase B.
    Kwon HC; Shin DY; Lee JH; Kim SW; Kang JW
    J Microbiol Biotechnol; 2007 Jul; 17(7):1098-105. PubMed ID: 18051319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of water as a nucleophile in Candida antarctica lipase B catalysis.
    Larsen MW; Zielinska DF; Martinelle M; Hidalgo A; Jensen LJ; Bornscheuer UT; Hult K
    Chembiochem; 2010 Apr; 11(6):796-801. PubMed ID: 20235107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A potential high-throughput method for the determination of lipase activity by potentiometric flow injection titrations.
    Vahl K; Kahlert H; Böttcher D; Wardenga R; Komorsky-Lovrić S; Bornscheuer U; Scholz F
    Anal Chim Acta; 2008 Mar; 610(1):44-9. PubMed ID: 18267138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions.
    Haeffner F; Norin T; Hult K
    Biophys J; 1998 Mar; 74(3):1251-62. PubMed ID: 9512023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.