BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 18462493)

  • 21. Parameter estimation of biological phenomena: an unscented Kalman filter approach.
    Meskin N; Nounou H; Nounou M; Datta A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):537-43. PubMed ID: 23929876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global optimization in systems biology: stochastic methods and their applications.
    Balsa-Canto E; Banga JR; Egea JA; Fernandez-Villaverde A; de Hijas-Liste GM
    Adv Exp Med Biol; 2012; 736():409-24. PubMed ID: 22161343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of metabolic network models from incomplete high-throughput datasets.
    Berthoumieux S; Brilli M; de Jong H; Kahn D; Cinquemani E
    Bioinformatics; 2011 Jul; 27(13):i186-95. PubMed ID: 21685069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computation of elementary modes: a unifying framework and the new binary approach.
    Gagneur J; Klamt S
    BMC Bioinformatics; 2004 Nov; 5():175. PubMed ID: 15527509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust and efficient parameter estimation in dynamic models of biological systems.
    Gábor A; Banga JR
    BMC Syst Biol; 2015 Oct; 9():74. PubMed ID: 26515482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From qualitative data to quantitative models: analysis of the phage shock protein stress response in Escherichia coli.
    Toni T; Jovanovic G; Huvet M; Buck M; Stumpf MP
    BMC Syst Biol; 2011 May; 5():69. PubMed ID: 21569396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of biochemical networks by S-tree based genetic programming.
    Cho DY; Cho KH; Zhang BT
    Bioinformatics; 2006 Jul; 22(13):1631-40. PubMed ID: 16585066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials.
    Cannon WR; Baker SE
    Phys Biol; 2017 Aug; 14(5):055003. PubMed ID: 28675379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calibration of dynamic models of biological systems with KInfer.
    Lecca P; Palmisano A; Ihekwaba A; Priami C
    Eur Biophys J; 2010 May; 39(6):1019-39. PubMed ID: 19669750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis.
    Tashkova K; Korošec P; Silc J; Todorovski L; Džeroski S
    BMC Syst Biol; 2011 Oct; 5():159. PubMed ID: 21989196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical systems identification by a random drift particle swarm optimization approach.
    Sun J; Palade V; Cai Y; Fang W; Wu X
    BMC Bioinformatics; 2014; 15 Suppl 6(Suppl 6):S1. PubMed ID: 25078435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling the dynamics of biosystems.
    Priami C; Quaglia P
    Brief Bioinform; 2004 Sep; 5(3):259-69. PubMed ID: 15383212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A cooperative strategy for parameter estimation in large scale systems biology models.
    Villaverde AF; Egea JA; Banga JR
    BMC Syst Biol; 2012 Jun; 6():75. PubMed ID: 22727112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An energetic reformulation of kinetic rate laws enables scalable parameter estimation for biochemical networks.
    C Mason J; W Covert M
    J Theor Biol; 2019 Jan; 461():145-156. PubMed ID: 30365946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging ensembles of kinetic parameters to characterize observed metabolic phenotypes.
    Colombo R; Damiani C; Gilbert D; Heiner M; Mauri G; Pescini D
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):251. PubMed ID: 30066662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved computational performance of MFA using elementary metabolite units and flux coupling.
    Suthers PF; Chang YJ; Maranas CD
    Metab Eng; 2010 Mar; 12(2):123-8. PubMed ID: 19837183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws--a promising method for speeding up the kinetic modelling of complex metabolic networks.
    Bulik S; Grimbs S; Huthmacher C; Selbig J; Holzhütter HG
    FEBS J; 2009 Jan; 276(2):410-24. PubMed ID: 19137631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling.
    Costa RS; Machado D; Rocha I; Ferreira EC
    IET Syst Biol; 2011 May; 5(3):157-63. PubMed ID: 21639589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parameter estimation in models of biological oscillators: an automated regularised estimation approach.
    Pitt JA; Banga JR
    BMC Bioinformatics; 2019 Feb; 20(1):82. PubMed ID: 30770736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.