BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 18462685)

  • 1. Crystal structures of human saposins C andD: implications for lipid recognition and membrane interactions.
    Rossmann M; Schultz-Heienbrok R; Behlke J; Remmel N; Alings C; Sandhoff K; Saenger W; Maier T
    Structure; 2008 May; 16(5):809-17. PubMed ID: 18462685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of the human ceramide activator protein saposin D.
    Popovic K; Privé GG
    Acta Crystallogr D Biol Crystallogr; 2008 May; 64(Pt 5):589-94. PubMed ID: 18453694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saposin B mobilizes lipids from cholesterol-poor and bis(monoacylglycero)phosphate-rich membranes at acidic pH. Unglycosylated patient variant saposin B lacks lipid-extraction capacity.
    Remmel N; Locatelli-Hoops S; Breiden B; Schwarzmann G; Sandhoff K
    FEBS J; 2007 Jul; 274(13):3405-20. PubMed ID: 17561962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of human saposins by NMR spectroscopy.
    John M; Wendeler M; Heller M; Sandhoff K; Kessler H
    Biochemistry; 2006 Apr; 45(16):5206-16. PubMed ID: 16618109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct visualization of saposin remodelling of lipid bilayers.
    Alattia JR; Shaw JE; Yip CM; Privé GG
    J Mol Biol; 2006 Oct; 362(5):943-53. PubMed ID: 16949605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure and functional studies reveal that PAS factor from Vibrio vulnificus is a novel member of the saposin-fold family.
    Lee JH; Yang ST; Rho SH; Im YJ; Kim SY; Kim YR; Kim MK; Kang GB; Kim JI; Rhee JH; Eom SH
    J Mol Biol; 2006 Jan; 355(3):491-500. PubMed ID: 16318855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of saposins A and C.
    Ahn VE; Leyko P; Alattia JR; Chen L; Privé GG
    Protein Sci; 2006 Aug; 15(8):1849-57. PubMed ID: 16823039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD.
    Büttner CR; Sorg I; Cornelis GR; Heinz DW; Niemann HH
    J Mol Biol; 2008 Jan; 375(4):997-1012. PubMed ID: 18054956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the GluR0 ligand-binding core from Nostoc punctiforme in complex with L-glutamate: structural dissection of the ligand interaction and subunit interface.
    Lee JH; Kang GB; Lim HH; Jin KS; Kim SH; Ree M; Park CS; Kim SJ; Eom SH
    J Mol Biol; 2008 Feb; 376(2):308-16. PubMed ID: 18164033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a chimera of human and Plasmodium falciparum hypoxanthine guanine phosphoribosyltransferases provides insights into oligomerization.
    Gayathri P; Sujay Subbayya IN; Ashok CS; Selvi TS; Balaram H; Murthy MR
    Proteins; 2008 Dec; 73(4):1010-20. PubMed ID: 18536021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual alpha-helical extensions.
    Chantalat L; Skoufias DA; Kleman JP; Jung B; Dideberg O; Margolis RL
    Mol Cell; 2000 Jul; 6(1):183-9. PubMed ID: 10949039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a putative pyridoxine 5'-phosphate oxidase (Rv2607) from Mycobacterium tuberculosis.
    Pédelacq JD; Rho BS; Kim CY; Waldo GS; Lekin TP; Segelke BW; Rupp B; Hung LW; Kim SI; Terwilliger TC
    Proteins; 2006 Mar; 62(3):563-9. PubMed ID: 16374842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of human saposin C in a detergent environment.
    Hawkins CA; de Alba E; Tjandra N
    J Mol Biol; 2005 Mar; 346(5):1381-92. PubMed ID: 15713488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.
    Yoshimura K; Kouyama T
    J Mol Biol; 2008 Feb; 375(5):1267-81. PubMed ID: 18082767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of the postulated intramolecular sphingolipid activator protein domain of human acid sphingomyelinase.
    Kölzer M; Ferlinz K; Bartelsen O; Hoops SL; Lang F; Sandhoff K
    Biol Chem; 2004 Dec; 385(12):1193-5. PubMed ID: 15653433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for vertebrate filamin dimerization.
    Pudas R; Kiema TR; Butler PJ; Stewart M; Ylänne J
    Structure; 2005 Jan; 13(1):111-9. PubMed ID: 15642266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational dynamics of a lipid-interacting protein: MD simulations of saposin B.
    Stokeley D; Bemporad D; Gavaghan D; Sansom MS
    Biochemistry; 2007 Nov; 46(47):13573-80. PubMed ID: 17983243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel dimerization mode of the human Bcl-2 family protein Bak, a mitochondrial apoptosis regulator.
    Wang H; Takemoto C; Akasaka R; Uchikubo-Kamo T; Kishishita S; Murayama K; Terada T; Chen L; Liu ZJ; Wang BC; Sugano S; Tanaka A; Inoue M; Kigawa T; Shirouzu M; Yokoyama S
    J Struct Biol; 2009 Apr; 166(1):32-7. PubMed ID: 19135534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structure of the C-terminal domain of a prokaryotic cation-chloride cotransporter.
    Warmuth S; Zimmermann I; Dutzler R
    Structure; 2009 Apr; 17(4):538-46. PubMed ID: 19368887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.