These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18462749)

  • 1. Allosteric and electrostatic protein-protein interactions regulate the assembly of the heterohexameric Tim9-Tim10 complex.
    Ivanova E; Lu H
    J Mol Biol; 2008 Jun; 379(3):609-16. PubMed ID: 18462749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller.
    Webb CT; Gorman MA; Lazarou M; Ryan MT; Gulbis JM
    Mol Cell; 2006 Jan; 21(1):123-33. PubMed ID: 16387659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperoning through the mitochondrial intermembrane space.
    Wiedemann N; Pfanner N; Chacinska A
    Mol Cell; 2006 Jan; 21(2):145-8. PubMed ID: 16427004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of the mitochondrial Tim9-Tim10 complex: a multi-step reaction with novel intermediates.
    Ivanova E; Jowitt TA; Lu H
    J Mol Biol; 2008 Jan; 375(1):229-39. PubMed ID: 18022191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10.
    Allen S; Lu H; Thornton D; Tokatlidis K
    J Biol Chem; 2003 Oct; 278(40):38505-13. PubMed ID: 12882976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Tim9 protects Tim10 from degradation by the protease Yme1.
    Spiller MP; Guo L; Wang Q; Tran P; Lu H
    Biosci Rep; 2015 Mar; 35(3):. PubMed ID: 26182355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pH and ionic strength on the assembly and bundling of FtsZ protofilaments: a possible role of electrostatic interactions in the bundling of protofilaments.
    Beuria TK; Shah JH; Santra MK; Kumar V; Panda D
    Int J Biol Macromol; 2006 Dec; 40(1):30-9. PubMed ID: 16815544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of the cytochrome bo3 complex.
    Stenberg F; von Heijne G; Daley DO
    J Mol Biol; 2007 Aug; 371(3):765-73. PubMed ID: 17583738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional requirements for activity of the Tim9-Tim10 complex in mitochondrial protein import.
    Baker MJ; Webb CT; Stroud DA; Palmer CS; Frazier AE; Guiard B; Chacinska A; Gulbis JM; Ryan MT
    Mol Biol Cell; 2009 Feb; 20(3):769-79. PubMed ID: 19037098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved substrate binding by chaperones in the bacterial periplasm and the mitochondrial intermembrane space.
    Alcock FH; Grossmann JG; Gentle IE; Likić VA; Lithgow T; Tokatlidis K
    Biochem J; 2008 Jan; 409(2):377-87. PubMed ID: 17894549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of Tim9 and Tim10 into a functional chaperone.
    Vial S; Lu H; Allen S; Savory P; Thornton D; Sheehan J; Tokatlidis K
    J Biol Chem; 2002 Sep; 277(39):36100-8. PubMed ID: 12138093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc binding stabilizes mitochondrial Tim10 in a reduced and import-competent state kinetically.
    Lu H; Woodburn J
    J Mol Biol; 2005 Nov; 353(4):897-910. PubMed ID: 16199054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basis of recognition between the NarJ chaperone and the N-terminus of the NarG subunit from Escherichia coli nitrate reductase.
    Zakian S; Lafitte D; Vergnes A; Pimentel C; Sebban-Kreuzer C; Toci R; Claude JB; Guerlesquin F; Magalon A
    FEBS J; 2010 Apr; 277(8):1886-95. PubMed ID: 20236317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study.
    Qu J; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Jun; 48(22):4926-36. PubMed ID: 19382746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent study reveals that dynamics of hydrophobic residues plays an important functional role in the mitochondrial Tim9-Tim10 complex.
    Ivanova E; Pang J; Jowitt TA; Yan G; Warwicker J; Sutcliffe MJ; Lu H
    Proteins; 2012 Feb; 80(2):602-15. PubMed ID: 22095685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of conserved charged residues in mitochondrial TIM10 subunits precludes TIM10 complex assembly, but does not abolish growth of yeast cells.
    Vergnolle MA; Alcock FH; Petrakis N; Tokatlidis K
    J Mol Biol; 2007 Aug; 371(5):1315-24. PubMed ID: 17618651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of the Escherichia coli hydrogenase biosynthetic proteins: HybG complex formation.
    Butland G; Zhang JW; Yang W; Sheung A; Wong P; Greenblatt JF; Emili A; Zamble DB
    FEBS Lett; 2006 Jan; 580(2):677-81. PubMed ID: 16412426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition.
    Cabrera R; Ambrosio AL; Garratt RC; Guixé V; Babul J
    J Mol Biol; 2008 Nov; 383(3):588-602. PubMed ID: 18762190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space.
    Gentle IE; Perry AJ; Alcock FH; Likić VA; Dolezal P; Ng ET; Purcell AW; McConnville M; Naderer T; Chanez AL; Charrière F; Aschinger C; Schneider A; Tokatlidis K; Lithgow T
    Mol Biol Evol; 2007 May; 24(5):1149-60. PubMed ID: 17329230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the ternary FimC-FimF(t)-FimD(N) complex indicates conserved pilus chaperone-subunit complex recognition by the usher FimD.
    Eidam O; Dworkowski FS; Glockshuber R; Grütter MG; Capitani G
    FEBS Lett; 2008 Mar; 582(5):651-5. PubMed ID: 18242189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.