These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
838 related articles for article (PubMed ID: 18462755)
1. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. Zha M; Guo Q; Zhang Y; Yu B; Ou Y; Zhong C; Ding J J Mol Biol; 2008 Jun; 379(3):568-78. PubMed ID: 18462755 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of human NUDT5 reveal insights into the structural basis of the substrate specificity. Zha M; Zhong C; Peng Y; Hu H; Ding J J Mol Biol; 2006 Dec; 364(5):1021-33. PubMed ID: 17052728 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanism of the Thermus thermophilus ADP-ribose pyrophosphatase from mutational and kinetic studies. Ooga T; Yoshiba S; Nakagawa N; Kuramitsu S; Masui R Biochemistry; 2005 Jul; 44(26):9320-9. PubMed ID: 15981998 [TBL] [Abstract][Full Text] [Related]
4. Activation of NUDT5, an ADP-ribose pyrophosphatase, by nitric oxide-mediated ADP-ribosylation. Yu HN; Song EK; Yoo SM; Lee YR; Han MK; Yim CY; Kwak JY; Kim JS Biochem Biophys Res Commun; 2007 Mar; 354(3):764-8. PubMed ID: 17261271 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for different substrate specificities of two ADP-ribose pyrophosphatases from Thermus thermophilus HB8. Wakamatsu T; Nakagawa N; Kuramitsu S; Masui R J Bacteriol; 2008 Feb; 190(3):1108-17. PubMed ID: 18039767 [TBL] [Abstract][Full Text] [Related]
6. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target. Harris JM; McIntosh EM; Muscat GE J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related]
8. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Gabelli SB; Bianchet MA; Bessman MJ; Amzel LM Nat Struct Biol; 2001 May; 8(5):467-72. PubMed ID: 11323725 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism. Chan S; Segelke B; Lekin T; Krupka H; Cho US; Kim MY; So M; Kim CY; Naranjo CM; Rogers YC; Park MS; Waldo GS; Pashkov I; Cascio D; Perry JL; Sawaya MR J Mol Biol; 2004 Aug; 341(2):503-17. PubMed ID: 15276840 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into the Thermus thermophilus ADP-ribose pyrophosphatase mechanism via crystal structures with the bound substrate and metal. Yoshiba S; Ooga T; Nakagawa N; Shibata T; Inoue Y; Yokoyama S; Kuramitsu S; Masui R J Biol Chem; 2004 Aug; 279(35):37163-74. PubMed ID: 15210687 [TBL] [Abstract][Full Text] [Related]
12. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes. Lokanath NK; Pampa KJ; Takio K; Kunishima N J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990 [TBL] [Abstract][Full Text] [Related]
13. ADP-Ribose Pyrophosphatase Reaction in Crystalline State Conducted by Consecutive Binding of Two Manganese(II) Ions as Cofactors. Furuike Y; Akita Y; Miyahara I; Kamiya N Biochemistry; 2016 Mar; 55(12):1801-12. PubMed ID: 26979298 [TBL] [Abstract][Full Text] [Related]
14. The crystal structure of a complex of Campylobacter jejuni dUTPase with substrate analogue sheds light on the mechanism and suggests the "basic module" for dimeric d(C/U)TPases. Moroz OV; Harkiolaki M; Galperin MY; Vagin AA; González-Pacanowska D; Wilson KS J Mol Biol; 2004 Oct; 342(5):1583-97. PubMed ID: 15364583 [TBL] [Abstract][Full Text] [Related]
15. The "open" and "closed" structures of the type-C inorganic pyrophosphatases from Bacillus subtilis and Streptococcus gordonii. Ahn S; Milner AJ; Fütterer K; Konopka M; Ilias M; Young TW; White SA J Mol Biol; 2001 Nov; 313(4):797-811. PubMed ID: 11697905 [TBL] [Abstract][Full Text] [Related]
17. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118 [TBL] [Abstract][Full Text] [Related]
18. Active site closure facilitates juxtaposition of reactant atoms for initiation of catalysis by human dUTPase. Varga B; Barabás O; Kovári J; Tóth J; Hunyadi-Gulyás E; Klement E; Medzihradszky KF; Tölgyesi F; Fidy J; Vértessy BG FEBS Lett; 2007 Oct; 581(24):4783-8. PubMed ID: 17880943 [TBL] [Abstract][Full Text] [Related]
19. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities. Yamamoto-Katayama S; Ariyoshi M; Ishihara K; Hirano T; Jingami H; Morikawa K J Mol Biol; 2002 Feb; 316(3):711-23. PubMed ID: 11866528 [TBL] [Abstract][Full Text] [Related]
20. Solution structure of the catalytic domain of gammadelta resolvase. Implications for the mechanism of catalysis. Pan B; Maciejewski MW; Marintchev A; Mullen GP J Mol Biol; 2001 Jul; 310(5):1089-107. PubMed ID: 11501998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]