BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18462881)

  • 1. Determination of optimum operating conditions of carmine decoloration by UV/H2O2 using response surface methodology.
    Körbahti BK; Rauf MA
    J Hazard Mater; 2009 Jan; 161(1):281-6. PubMed ID: 18462881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photolytic decolorization of Rose Bengal by UV/H(2)O(2) and data optimization using response surface method.
    Rauf MA; Marzouki N; Körbahti BK
    J Hazard Mater; 2008 Nov; 159(2-3):602-9. PubMed ID: 18395977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology.
    Zhang Z; Zheng H
    J Hazard Mater; 2009 Dec; 172(2-3):1388-93. PubMed ID: 19717231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process.
    Saquib M; Abu Tariq M; Haque MM; Muneer M
    J Environ Manage; 2008 Jul; 88(2):300-6. PubMed ID: 17490807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of experimental variables on decoloration of azo reactive dyes by hydrogen peroxide and UV radiation.
    da Fonseca Araújo FV; Yokoyama L; Teixeira LA
    Environ Technol; 2007 Oct; 28(10):1073-8. PubMed ID: 17970513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltammetric determination of sericin based on its interaction with carmine.
    Ma MM; Song JF
    Talanta; 2009 Nov; 80(1):163-7. PubMed ID: 19782207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response surface methodology (RSM) analysis of photodegradation of sulfonated diazo dye Reactive Green 19 by UV/H2O2 process.
    Zuorro A; Fidaleo M; Lavecchia R
    J Environ Manage; 2013 Sep; 127():28-35. PubMed ID: 23676376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of Acid Red 274 using H2O2 in subcritical water: application of response surface methodology.
    Kayan B; Gözmen B
    J Hazard Mater; 2012 Jan; 201-202():100-6. PubMed ID: 22169144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H2O2/UV-C oxidation of potential endocrine disrupting compounds: a case study with dimethyl phthalate.
    Olmez-Hanci T; Imren C; Arslan-Alaton I; Kabdaşli I; Tünay O
    Photochem Photobiol Sci; 2009 May; 8(5):620-7. PubMed ID: 19424534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design.
    Sharma P; Singh L; Dilbaghi N
    J Hazard Mater; 2009 May; 164(2-3):1024-9. PubMed ID: 18845394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodegradation of metolachlor applying UV and UV/H2O2.
    Wu C; Shemer H; Linden KG
    J Agric Food Chem; 2007 May; 55(10):4059-65. PubMed ID: 17447786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for determining identity and relative purity of carmine, carminic acid and aminocarminic acid.
    Dapson R
    Biotech Histochem; 2005; 80(5-6):201-5. PubMed ID: 16720520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of organic dyes by UV/H2O2 process: modelling and optimization.
    Kasiri MB; Khataee AR
    Environ Technol; 2012 Jun; 33(10-12):1417-25. PubMed ID: 22856317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoloration of waste PET alcoholysis liquid by an electrochemical method.
    Li Y; Li M; Lu J; Li X; Ge M
    Water Sci Technol; 2018 Jun; 77(9-10):2463-2473. PubMed ID: 29893735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous two-phase systems: an efficient, environmentally safe and economically viable method for purification of natural dye carmine.
    Mageste AB; de Lemos LR; Ferreira GM; da Silva Mdo C; da Silva LH; Bonomo RC; Minim LA
    J Chromatogr A; 2009 Nov; 1216(45):7623-9. PubMed ID: 19800067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV light.
    Son HS; Im JK; Zoh KD
    Water Res; 2009 Mar; 43(5):1457-63. PubMed ID: 19131086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO3 semiconductor catalyst.
    Qamar M; Gondal MA; Hayat K; Yamani ZH; Al-Hooshani K
    J Hazard Mater; 2009 Oct; 170(2-3):584-9. PubMed ID: 19540669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius.
    Sharma P; Singh L; Dilbaghi N
    J Hazard Mater; 2009 Jan; 161(2-3):1081-6. PubMed ID: 18524475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysis and H2O2-assisted UV photolysis of 3-chloro-1,2-propanediol.
    Nienow AM; Poyer IC; Hua I; Jafvert CT
    Chemosphere; 2009 May; 75(8):1015-20. PubMed ID: 19282021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of photolysis of diclofenac using a response surface methodology.
    Im JK; Kim MK; Zoh KD
    Water Sci Technol; 2013; 67(4):907-14. PubMed ID: 23306272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.