BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1846302)

  • 1. Quenching of tryptophan phosphorescence in Escherichia coli alkaline phosphatase by long-range transfer mechanisms to external agents in the rapid-diffusion limit.
    Mersol JV; Steel DG; Gafni A
    Biochemistry; 1991 Jan; 30(3):668-75. PubMed ID: 1846302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct kinetic evidence for triplet state energy transfer from Escherichia coli alkaline phosphatase tryptophan 109 to bound terbium.
    Schlyer BD; Steel DG; Gafni A
    J Biol Chem; 1995 Sep; 270(39):22890-4. PubMed ID: 7559424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme protein dynamics studied by phosphorescence of an external phosphorescent probe molecule.
    Beckham S; Cook MP; Karki L; Luchsinger MM; Whitlock VR; Wu Y; Zhang Q; Schuh MD
    Arch Biochem Biophys; 1994 May; 310(2):440-7. PubMed ID: 8179330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorescence of alkaline phosphatase of E. coli in vitro and in situ.
    Horie T; Vanderkooi JM
    Biochim Biophys Acta; 1981 Sep; 670(2):294-7. PubMed ID: 7028128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of alkaline phosphatase with cytochrome c.
    Dadák V; Vrána O; Nováková O; Antalík M
    Biochim Biophys Acta; 1996 Sep; 1297(1):69-76. PubMed ID: 8841382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the tryptophan residues of Escherechia coli alkaline phosphatase by phosphorescence and optically detected magnetic resonance spectroscopy.
    Ghosh S; Misra A; Ozarowski A; Stuart C; Maki AH
    Biochemistry; 2001 Dec; 40(49):15024-30. PubMed ID: 11732924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer from excited tryptophan to cytochrome c: mechanism of phosphorescence quenching?
    Dadak V; Vanderkooi JM; Wright WW
    Biochim Biophys Acta; 1992 Apr; 1100(1):33-9. PubMed ID: 1314664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen exchange at the core of Escherichia coli alkaline phosphatase studied by room-temperature tryptophan phosphorescence.
    Fischer CJ; Schauerte JA; Wisser KC; Gafni A; Steel DG
    Biochemistry; 2000 Feb; 39(6):1455-61. PubMed ID: 10684627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase.
    Mersol JV; Steel DG; Gafni A
    Biophys Chem; 1993 Dec; 48(2):281-91. PubMed ID: 8298060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-range electron exchange measured in proteins by quenching of tryptophan phosphorescence.
    Vanderkooi JM; Englander SW; Papp S; Wright WW; Owen CS
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5099-103. PubMed ID: 2367526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penetration of analogues of H2O and CO2 in proteins studied by room temperature phosphorescence of tryptophan.
    Wright WW; Owen CS; Vanderkooi JM
    Biochemistry; 1992 Jul; 31(28):6538-44. PubMed ID: 1633165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Penetration of dioxygen into proteins studied by quenching of phosphorescence and fluorescence.
    Calhoun DB; Vanderkooi JM; Woodrow GV; Englander SW
    Biochemistry; 1983 Mar; 22(7):1526-32. PubMed ID: 6342662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy.
    Consani C; Auböck G; van Mourik F; Chergui M
    Science; 2013 Mar; 339(6127):1586-9. PubMed ID: 23393092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of tryptophan phosphorescence of aspartate aminotransferase from Escherichia coli.
    Cioni P; Onuffer JJ; Strambini GB
    Eur J Biochem; 1992 Oct; 209(2):759-64. PubMed ID: 1425679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quenching of room temperature protein phosphorescence by added small molecules.
    Calhoun DB; Englander SW; Wright WW; Vanderkooi JM
    Biochemistry; 1988 Nov; 27(22):8466-74. PubMed ID: 3242596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins.
    Gonnelli M; Strambini GB
    Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophan-to-heme electron transfer in ferrous myoglobins.
    Monni R; Al Haddad A; van Mourik F; Auböck G; Chergui M
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5602-6. PubMed ID: 25902517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of multitryptophan protein with drug: an insight into the binding mechanism and the binding domain by time resolved emission, anisotropy, phosphorescence and docking.
    Mukherjee M; Sardar PS; Ghorai SK; Samanta SK; Roy AS; Dasgupta S; Ghosh S
    J Photochem Photobiol B; 2012 Oct; 115():93-104. PubMed ID: 22884693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long time-scale probing of the protein globular core using hydrogen-exchange and room temperature phosphorescence.
    Schlyer BD; Steel DG; Gafni A
    Biochem Biophys Res Commun; 1996 Jun; 223(3):670-4. PubMed ID: 8687454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.