BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 18463093)

  • 1. Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region.
    Shimamura T; Hiraki K; Takahashi N; Hori T; Ago H; Masuda K; Takio K; Ishiguro M; Miyano M
    J Biol Chem; 2008 Jun; 283(26):17753-6. PubMed ID: 18463093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of squid rhodopsin.
    Murakami M; Kouyama T
    Nature; 2008 May; 453(7193):363-7. PubMed ID: 18480818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors.
    Angel TE; Chance MR; Palczewski K
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8555-60. PubMed ID: 19433801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the structure of opioid receptors with homology modeling based on single and multiple templates and subsequent docking: a comparative study.
    Bera I; Laskar A; Ghoshal N
    J Mol Model; 2011 May; 17(5):1207-21. PubMed ID: 20661609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin.
    Sugihara M; Fujibuchi W; Suwa M
    J Phys Chem B; 2011 May; 115(19):6172-9. PubMed ID: 21510671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops.
    Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG
    Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the possible conformations of the extracellular loops in G-protein-coupled receptors.
    Nikiforovich GV; Taylor CM; Marshall GR; Baranski TJ
    Proteins; 2010 Feb; 78(2):271-85. PubMed ID: 19731375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.
    Worth CL; Kleinau G; Krause G
    PLoS One; 2009 Sep; 4(9):e7011. PubMed ID: 19756152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projection structure of an invertebrate rhodopsin.
    Davies A; Schertler GF; Gowen BE; Saibil HR
    J Struct Biol; 1996; 117(1):36-44. PubMed ID: 8776886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin.
    Trabanino RJ; Hall SE; Vaidehi N; Floriano WB; Kam VW; Goddard WA
    Biophys J; 2004 Apr; 86(4):1904-21. PubMed ID: 15041637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of rhodopsin: A G protein-coupled receptor.
    Palczewski K; Kumasaka T; Hori T; Behnke CA; Motoshima H; Fox BA; Le Trong I; Teller DC; Okada T; Stenkamp RE; Yamamoto M; Miyano M
    Science; 2000 Aug; 289(5480):739-45. PubMed ID: 10926528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the internal water molecules in squid rhodopsin.
    Jardón-Valadez E; Bondar AN; Tobias DJ
    Biophys J; 2009 Apr; 96(7):2572-6. PubMed ID: 19348742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Mol Vis; 1996 Dec; 2():12. PubMed ID: 9238089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1.
    Altenbach C; Klein-Seetharaman J; Cai K; Khorana HG; Hubbell WL
    Biochemistry; 2001 Dec; 40(51):15493-500. PubMed ID: 11747424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionally discrete mimics of light-activated rhodopsin identified through expression of soluble cytoplasmic domains.
    Abdulaev NG; Ngo T; Chen R; Lu Z; Ridge KD
    J Biol Chem; 2000 Dec; 275(50):39354-63. PubMed ID: 10988291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constraints on the conformation of the cytoplasmic face of dark-adapted and light-excited rhodopsin inferred from antirhodopsin antibody imprints.
    Bailey BW; Mumey B; Hargrave PA; Arendt A; Ernst OP; Hofmann KP; Callis PR; Burritt JB; Jesaitis AJ; Dratz EA
    Protein Sci; 2003 Nov; 12(11):2453-75. PubMed ID: 14573859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation.
    Fritze O; Filipek S; Kuksa V; Palczewski K; Hofmann KP; Ernst OP
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2290-5. PubMed ID: 12601165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process.
    Kirchberg K; Kim TY; Möller M; Skegro D; Dasara Raju G; Granzin J; Büldt G; Schlesinger R; Alexiev U
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18690-5. PubMed ID: 22039220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Position of transmembrane helix 6 determines receptor G protein coupling specificity.
    Rose AS; Elgeti M; Zachariae U; Grubmüller H; Hofmann KP; Scheerer P; Hildebrand PW
    J Am Chem Soc; 2014 Aug; 136(32):11244-7. PubMed ID: 25046433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.