These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 18463140)

  • 1. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.
    Lundegaard C; Lamberth K; Harndahl M; Buus S; Lund O; Nielsen M
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W509-12. PubMed ID: 18463140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods.
    Zhang H; Lundegaard C; Nielsen M
    Bioinformatics; 2009 Jan; 25(1):83-9. PubMed ID: 18996943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers.
    Lundegaard C; Lund O; Nielsen M
    Bioinformatics; 2008 Jun; 24(11):1397-8. PubMed ID: 18413329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NetMHCpan, a method for MHC class I binding prediction beyond humans.
    Hoof I; Peters B; Sidney J; Pedersen LE; Sette A; Lund O; Buus S; Nielsen M
    Immunogenetics; 2009 Jan; 61(1):1-13. PubMed ID: 19002680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NetMHCstab - predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery.
    Jørgensen KW; Rasmussen M; Buus S; Nielsen M
    Immunology; 2014 Jan; 141(1):18-26. PubMed ID: 23927693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions.
    Karosiene E; Lundegaard C; Lund O; Nielsen M
    Immunogenetics; 2012 Mar; 64(3):177-86. PubMed ID: 22009319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MHC motif viewer.
    Rapin N; Hoof I; Lund O; Nielsen M
    Immunogenetics; 2008 Dec; 60(12):759-65. PubMed ID: 18766337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated benchmarking of peptide-MHC class I binding predictions.
    Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M
    Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.
    Carrasco Pro S; Zimic M; Nielsen M
    Tissue Antigens; 2014 Feb; 83(2):94-100. PubMed ID: 24447175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved prediction of MHC class I binders/non-binders peptides through artificial neural network using variable learning rate: SARS corona virus, a case study.
    Soam SS; Bhasker B; Mishra BN
    Adv Exp Med Biol; 2011; 696():223-9. PubMed ID: 21431562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of MHC class I binding peptides, using SVMHC.
    Dönnes P; Elofsson A
    BMC Bioinformatics; 2002 Sep; 3():25. PubMed ID: 12225620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes.
    Bordner AJ; Mittelmann HD
    BMC Bioinformatics; 2010 Sep; 11():482. PubMed ID: 20868497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A community resource benchmarking predictions of peptide binding to MHC-I molecules.
    Peters B; Bui HH; Frankild S; Nielson M; Lundegaard C; Kostem E; Basch D; Lamberth K; Harndahl M; Fleri W; Wilson SS; Sidney J; Lund O; Buus S; Sette A
    PLoS Comput Biol; 2006 Jun; 2(6):e65. PubMed ID: 16789818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes.
    Bhasin M; Raghava GP
    J Biosci; 2007 Jan; 32(1):31-42. PubMed ID: 17426378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence-derived physicochemical properties.
    Cui J; Han LY; Lin HH; Tang ZQ; Jiang L; Cao ZW; Chen YZ
    Immunogenetics; 2006 Aug; 58(8):607-13. PubMed ID: 16832638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gapped sequence alignment using artificial neural networks: application to the MHC class I system.
    Andreatta M; Nielsen M
    Bioinformatics; 2016 Feb; 32(4):511-7. PubMed ID: 26515819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity.
    Liu G; Li D; Li Z; Qiu S; Li W; Chao CC; Yang N; Li H; Cheng Z; Song X; Cheng L; Zhang X; Wang J; Yang H; Ma K; Hou Y; Li B
    Gigascience; 2017 May; 6(5):1-11. PubMed ID: 28327987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.