These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 18463140)

  • 41. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low HLA binding of diabetes-associated CD8+ T-cell epitopes is increased by post translational modifications.
    Sidney J; Vela JL; Friedrich D; Kolla R; von Herrath M; Wesley JD; Sette A
    BMC Immunol; 2018 Mar; 19(1):12. PubMed ID: 29562882
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Implementing the modular MHC model for predicting peptide binding.
    DeLuca DS; Blasczyk R
    Methods Mol Biol; 2007; 409():261-71. PubMed ID: 18450006
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity.
    Rasmussen M; Fenoy E; Harndahl M; Kristensen AB; Nielsen IK; Nielsen M; Buus S
    J Immunol; 2016 Aug; 197(4):1517-24. PubMed ID: 27402703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure.
    Nielsen M; Justesen S; Lund O; Lundegaard C; Buus S
    Immunome Res; 2010 Nov; 6():9. PubMed ID: 21073747
    [TBL] [Abstract][Full Text] [Related]  

  • 47. EpiTOP--a proteochemometric tool for MHC class II binding prediction.
    Dimitrov I; Garnev P; Flower DR; Doytchinova I
    Bioinformatics; 2010 Aug; 26(16):2066-8. PubMed ID: 20576624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands.
    Reche PA; Reinherz EL
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W138-42. PubMed ID: 15980443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MHCflurry: Open-Source Class I MHC Binding Affinity Prediction.
    O'Donnell TJ; Rubinsteyn A; Bonsack M; Riemer AB; Laserson U; Hammerbacher J
    Cell Syst; 2018 Jul; 7(1):129-132.e4. PubMed ID: 29960884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrated modeling of the major events in the MHC class I antigen processing pathway.
    Dönnes P; Kohlbacher O
    Protein Sci; 2005 Aug; 14(8):2132-40. PubMed ID: 15987883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of promiscuous and high-affinity mutated MHC binders.
    Bhasin M; Raghava GP
    Hybrid Hybridomics; 2003 Aug; 22(4):229-34. PubMed ID: 14511568
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions.
    Kim Y; Sidney J; Buus S; Sette A; Nielsen M; Peters B
    BMC Bioinformatics; 2014 Jul; 15(1):241. PubMed ID: 25017736
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence.
    Nielsen M; Lundegaard C; Blicher T; Lamberth K; Harndahl M; Justesen S; Røder G; Peters B; Sette A; Lund O; Buus S
    PLoS One; 2007 Aug; 2(8):e796. PubMed ID: 17726526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting peptide presentation by major histocompatibility complex class I: an improved machine learning approach to the immunopeptidome.
    Boehm KM; Bhinder B; Raja VJ; Dephoure N; Elemento O
    BMC Bioinformatics; 2019 Jan; 20(1):7. PubMed ID: 30611210
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NetTepi: an integrated method for the prediction of T cell epitopes.
    Trolle T; Nielsen M
    Immunogenetics; 2014 Aug; 66(7-8):449-56. PubMed ID: 24863339
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach.
    Andreatta M; Lund O; Nielsen M
    Bioinformatics; 2013 Jan; 29(1):8-14. PubMed ID: 23097419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of peptide-MHC binding using profiles.
    Reche PA; Reinherz EL
    Methods Mol Biol; 2007; 409():185-200. PubMed ID: 18450001
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes: a comparative molecular similarity index analysis (CoMSIA) study.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    J Chem Inf Model; 2005; 45(5):1415-23. PubMed ID: 16180918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MHCII3D-Robust Structure Based Prediction of MHC II Binding Peptides.
    Laimer J; Lackner P
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.