These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 18463613)

  • 1. Network-based global inference of human disease genes.
    Wu X; Jiang R; Zhang MQ; Li S
    Mol Syst Biol; 2008; 4():189. PubMed ID: 18463613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards prediction and prioritization of disease genes by the modularity of human phenome-genome assembled network.
    Jiang JQ; Dress AW; Chen M
    J Integr Bioinform; 2010 Nov; 7(2):. PubMed ID: 21098881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network.
    Yao X; Hao H; Li Y; Li S
    BMC Syst Biol; 2011 May; 5():79. PubMed ID: 21599985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network.
    Linghu B; Snitkin ES; Hu Z; Xia Y; Delisi C
    Genome Biol; 2009; 10(9):R91. PubMed ID: 19728866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.
    Guney E; Oliva B
    PLoS One; 2012; 7(9):e43557. PubMed ID: 23028459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DomainRBF: a Bayesian regression approach to the prioritization of candidate domains for complex diseases.
    Zhang W; Chen Y; Sun F; Jiang R
    BMC Syst Biol; 2011 Apr; 5():55. PubMed ID: 21504591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-Based Analysis of eQTL Data to Prioritize Driver Mutations.
    De Maeyer D; Weytjens B; De Raedt L; Marchal K
    Genome Biol Evol; 2016 Jan; 8(3):481-94. PubMed ID: 26802430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.
    Li Y; Patra JC
    Bioinformatics; 2010 May; 26(9):1219-24. PubMed ID: 20215462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network based integrated analysis of phenotype-genotype data for prioritization of candidate symptom genes.
    Li X; Zhou X; Peng Y; Liu B; Zhang R; Hu J; Yu J; Jia C; Sun C
    Biomed Res Int; 2014; 2014():435853. PubMed ID: 24991551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene prioritization for livestock diseases by data integration.
    Jiang L; Sørensen P; Thomsen B; Edwards SM; Skarman A; Røntved CM; Lund MS; Workman CT
    Physiol Genomics; 2012 Mar; 44(5):305-17. PubMed ID: 22234994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.
    Wu M; Lin Z; Ma S; Chen T; Jiang R; Wong WH
    J Mol Cell Biol; 2017 Dec; 9(6):436-452. PubMed ID: 29300920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inference of gene-phenotype associations via protein-protein interaction and orthology.
    Wang P; Lai WF; Li MJ; Xu F; Yalamanchili HK; Lovell-Badge R; Wang J
    PLoS One; 2013; 8(10):e77478. PubMed ID: 24194887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trastuzumab and beyond: sequencing cancer genomes and predicting molecular networks.
    Roukos DH
    Pharmacogenomics J; 2011 Apr; 11(2):81-92. PubMed ID: 20975737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Prioritizing Disease Candidate lncRNAs via a Multi-level Composite Network.
    Yao Q; Wu L; Li J; Yang LG; Sun Y; Li Z; He S; Feng F; Li H; Li Y
    Sci Rep; 2017 Jan; 7():39516. PubMed ID: 28051121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Prioritization of Disease Candidate Metabolites Based on a Multi-omics Composite Network.
    Yao Q; Xu Y; Yang H; Shang D; Zhang C; Zhang Y; Sun Z; Shi X; Feng L; Han J; Su F; Li C; Li X
    Sci Rep; 2015 Nov; 5():17201. PubMed ID: 26598063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The road less traveled: from genotype to phenotype in flies and humans.
    Anholt RRH; Mackay TFC
    Mamm Genome; 2018 Feb; 29(1-2):5-23. PubMed ID: 29058036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.