These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 18463617)
1. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Sugiyama N; Nakagami H; Mochida K; Daudi A; Tomita M; Shirasu K; Ishihama Y Mol Syst Biol; 2008; 4():193. PubMed ID: 18463617 [TBL] [Abstract][Full Text] [Related]
2. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Nakagami H; Sugiyama N; Mochida K; Daudi A; Yoshida Y; Toyoda T; Tomita M; Ishihama Y; Shirasu K Plant Physiol; 2010 Jul; 153(3):1161-74. PubMed ID: 20466843 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the phosphoproteome of mature Arabidopsis pollen. Mayank P; Grossman J; Wuest S; Boisson-Dernier A; Roschitzki B; Nanni P; Nühse T; Grossniklaus U Plant J; 2012 Oct; 72(1):89-101. PubMed ID: 22631563 [TBL] [Abstract][Full Text] [Related]
4. Selective enrichment in phosphopeptides for the identification of phosphorylated mitochondrial proteins. Pocsfalvi G Methods Enzymol; 2009; 457():81-96. PubMed ID: 19426863 [TBL] [Abstract][Full Text] [Related]
5. Analysis of sites of protein phosphorylation. Aitken A; Learmonth M Methods Mol Biol; 1997; 64():293-306. PubMed ID: 9116832 [No Abstract] [Full Text] [Related]
7. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Grønborg M; Kristiansen TZ; Stensballe A; Andersen JS; Ohara O; Mann M; Jensen ON; Pandey A Mol Cell Proteomics; 2002 Jul; 1(7):517-27. PubMed ID: 12239280 [TBL] [Abstract][Full Text] [Related]
8. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Macek B; Gnad F; Soufi B; Kumar C; Olsen JV; Mijakovic I; Mann M Mol Cell Proteomics; 2008 Feb; 7(2):299-307. PubMed ID: 17938405 [TBL] [Abstract][Full Text] [Related]
11. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612 [TBL] [Abstract][Full Text] [Related]
12. Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. de la Fuente van Bentem S; Anrather D; Roitinger E; Djamei A; Hufnagl T; Barta A; Csaszar E; Dohnal I; Lecourieux D; Hirt H Nucleic Acids Res; 2006; 34(11):3267-78. PubMed ID: 16807317 [TBL] [Abstract][Full Text] [Related]
13. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. Ge R; Sun X; Xiao C; Yin X; Shan W; Chen Z; He QY Proteomics; 2011 Apr; 11(8):1449-61. PubMed ID: 21360674 [TBL] [Abstract][Full Text] [Related]
14. Identification and analysis of phosphorylation status of proteins in dormant terminal buds of poplar. Liu CC; Liu CF; Wang HX; Shen ZY; Yang CP; Wei ZG BMC Plant Biol; 2011 Nov; 11():158. PubMed ID: 22074553 [TBL] [Abstract][Full Text] [Related]
15. PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Heazlewood JL; Durek P; Hummel J; Selbig J; Weckwerth W; Walther D; Schulze WX Nucleic Acids Res; 2008 Jan; 36(Database issue):D1015-21. PubMed ID: 17984086 [TBL] [Abstract][Full Text] [Related]
16. Mass-spectrometry-based draft of the Arabidopsis proteome. Mergner J; Frejno M; List M; Papacek M; Chen X; Chaudhary A; Samaras P; Richter S; Shikata H; Messerer M; Lang D; Altmann S; Cyprys P; Zolg DP; Mathieson T; Bantscheff M; Hazarika RR; Schmidt T; Dawid C; Dunkel A; Hofmann T; Sprunck S; Falter-Braun P; Johannes F; Mayer KFX; Jürgens G; Wilhelm M; Baumbach J; Grill E; Schneitz K; Schwechheimer C; Kuster B Nature; 2020 Mar; 579(7799):409-414. PubMed ID: 32188942 [TBL] [Abstract][Full Text] [Related]
17. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants. Mithoe SC; Boersema PJ; Berke L; Snel B; Heck AJ; Menke FL J Proteome Res; 2012 Jan; 11(1):438-48. PubMed ID: 22074104 [TBL] [Abstract][Full Text] [Related]
18. PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity. Lee TY; Bretaña NA; Lu CT BMC Bioinformatics; 2011 Jun; 12():261. PubMed ID: 21703007 [TBL] [Abstract][Full Text] [Related]
19. Cloning and biochemical characterization of a plant protein kinase that phosphorylates serine, threonine, and tyrosine. Ali N; Halfter U; Chua NH J Biol Chem; 1994 Dec; 269(50):31626-9. PubMed ID: 7527390 [TBL] [Abstract][Full Text] [Related]
20. Thin-layer chromatography can resolve phosphotyrosine, phosphoserine, and phosphothreonine in a protein hydrolyzate. Neufeld E; Goren HJ; Boland D Anal Biochem; 1989 Feb; 177(1):138-43. PubMed ID: 2472754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]