These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1846376)

  • 1. A teaching phantom for sonographers.
    Zagzebski JA; Madsen EL; Frank GR
    J Clin Ultrasound; 1991 Jan; 19(1):27-38. PubMed ID: 1846376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An anthropomorphic torso section phantom for ultrasonic imaging.
    Madsen EL; Zagzebski JA; Ghilardi-Netto T
    Med Phys; 1980; 7(1):43-50. PubMed ID: 7366540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anthropomorphic ultrasound breast phantom containing intermediate-sized scatterers.
    Madsen EL; Zagzebski JA; Frank GR
    Ultrasound Med Biol; 1982; 8(4):381-92. PubMed ID: 7112724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anthropomorphic breast phantoms for assessing ultrasonic imaging system performance and for training ultrasonographers: part II.
    Madsen EL; Zagzebski JA; Frank GR; Greenleaf JF; Carson PL
    J Clin Ultrasound; 1982 Mar; 10(3):91-100. PubMed ID: 6804521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthropomorphic breast phantoms for assessing ultrasonic imaging system performance and for training ultrasonographers: part I.
    Madsen EL; Zagzebski JA; Frank GR; Greenleaf JF; Carson PL
    J Clin Ultrasound; 1982 Feb; 10(2):67-75. PubMed ID: 6804504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-mimicking materials for teaching sonographers and evaluation of their specifications after three years.
    Mokhtari-Dizaji M
    Ultrasound Med Biol; 2001 Dec; 27(12):1713-6. PubMed ID: 11839416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A performance comparison of novel cadmium-zinc-telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation.
    Liu CJ; Cheng JS; Chen YC; Huang YH; Yen RF
    Ann Nucl Med; 2015 May; 29(4):342-50. PubMed ID: 25628019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tissue-equivalent upper abdominal phantom.
    Scherzinger AL; Carson PL; Clayman W; Carter W; Johnson ML; Rashbaum C
    J Ultrasound Med; 1983 Oct; 2(10):455-62. PubMed ID: 6632059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonically tissue-mimicking liver including the frequency dependence of backscatter.
    Madsen EL; Zagzebski JA; Insana MF; Burke TM; Frank G
    Med Phys; 1982; 9(5):703-10. PubMed ID: 7155072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An anthropomorphic tissue-mimicking phantom of the oesophagus for endoscopic ultrasound.
    Inglis S; Ramnarine KV; Plevris JN; McDicken WN
    Ultrasound Med Biol; 2006 Feb; 32(2):249-59. PubMed ID: 16464670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects for ultrasonic spectroscopy and spectral imaging of abdominal tissues.
    Sommer FG; Stetson P; Chen HS; Stern RA; Rachlin DJ; Macovski A
    J Ultrasound Med; 1993 Feb; 12(2):83-90. PubMed ID: 8468741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Tissue-Mimicking Phantom of the Brain for Ultrasonic Studies.
    Taghizadeh S; Labuda C; Mobley J
    Ultrasound Med Biol; 2018 Dec; 44(12):2813-2820. PubMed ID: 30274683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray linear attenuation coefficients in the mammographic range for ultrasonic breast phantom materials.
    Burke TM; Madsen EL; Zagzebski JA
    Radiology; 1982 Mar; 142(3):755-7. PubMed ID: 7063698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A patient-equivalent attenuation phantom for estimating patient exposures from automatic exposure controlled x-ray examinations of the abdomen and lumbo-sacral spine.
    Conway BJ; Duff JE; Fewell TR; Jennings RJ; Rothenberg LN; Fleischman RC
    Med Phys; 1990; 17(3):448-53. PubMed ID: 2385202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specular reflector noise: effect and correction for in vivo attenuation estimation.
    Laugier P; Berger G; Fink M; Perrin J
    Ultrason Imaging; 1985 Oct; 7(4):277-92. PubMed ID: 3914769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic signal processing for in vivo attenuation measurement: short time Fourier analysis.
    Fink M; Hottier F; Cardoso JF
    Ultrason Imaging; 1983 Apr; 5(2):117-35. PubMed ID: 6683891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic mechanism of attenuation of compressional ultrasonic waves in tissue-mimicking phantom materials.
    Wu EX; Goodsitt MM; Madsen EL
    Ultrason Imaging; 1992 Apr; 14(2):121-33. PubMed ID: 1604754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvements in the spectral difference method for measuring ultrasonic attenuation.
    Insana M; Zagzebski J; Madsen E
    Ultrason Imaging; 1983 Oct; 5(4):331-45. PubMed ID: 6686899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Energy Computed Tomography for the Characterization of Intracranial Hemorrhage and Calcification: A Systematic Approach in a Phantom System.
    Nute JL; Jacobsen MC; Chandler A; Cody DD; Schellingerhout D
    Invest Radiol; 2017 Jan; 52(1):30-41. PubMed ID: 27379697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple phantom for learning needle placement for sonographically guided biopsy.
    Silver B; Metzger TS; Matalon TA
    AJR Am J Roentgenol; 1990 Apr; 154(4):847-8. PubMed ID: 2107686
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.