BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18463826)

  • 1. Fourier transform-infrared microspectroscopy and microscopic imaging.
    Gourion-Arsiquaud S; West PA; Boskey AL
    Methods Mol Biol; 2008; 455():293-303. PubMed ID: 18463826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier transform infrared spectroscopy research on subchondral bone in osteoarthritis.
    Zhai M; Lu Y; Fu J; Zhu Y; Zhao Y; Shang L; Yin J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jul; 218():243-247. PubMed ID: 31003049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared assessment of bone quality: a review.
    Paschalis EP; Mendelsohn R; Boskey AL
    Clin Orthop Relat Res; 2011 Aug; 469(8):2170-8. PubMed ID: 21210314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced chemical and spatial recognition of fish bones in surimi by Tri-step infrared spectroscopy and infrared microspectroscopic imaging.
    Wei W; Yan Y; Zhang XP; Liu Y; Lu Y; Shi WZ; Xu CH
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():186-192. PubMed ID: 30015024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation.
    Boskey AL; DiCarlo E; Paschalis E; West P; Mendelsohn R
    Osteoporos Int; 2005 Dec; 16(12):2031-8. PubMed ID: 16088360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone material properties in premenopausal women with idiopathic osteoporosis.
    Misof BM; Gamsjaeger S; Cohen A; Hofstetter B; Roschger P; Stein E; Nickolas TL; Rogers HF; Dempster D; Zhou H; Recker R; Lappe J; McMahon D; Paschalis EP; Fratzl P; Shane E; Klaushofer K
    J Bone Miner Res; 2012 Dec; 27(12):2551-61. PubMed ID: 22777919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early Alterations in Bone Characteristics of Type I Diabetic Rat Femur: A Fourier Transform Infrared (FT-IR) Imaging Study.
    Bozkurt O; Bilgin MD; Evis Z; Pleshko N; Severcan F
    Appl Spectrosc; 2016 Dec; 70(12):2005-2015. PubMed ID: 27680083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy.
    Camacho NP; Rinnerthaler S; Paschalis EP; Mendelsohn R; Boskey AL; Fratzl P
    Bone; 1999 Sep; 25(3):287-93. PubMed ID: 10495132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared analysis of bone in health and disease.
    Boskey A; Mendelsohn R
    J Biomed Opt; 2005; 10(3):031102. PubMed ID: 16229627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
    Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H
    Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared microspectroscopic characteristics of radiation-induced apoptosis in human lymphocytes.
    Gault N; Lefaix JL
    Radiat Res; 2003 Aug; 160(2):238-50. PubMed ID: 12859236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone.
    Paschalis EP; Betts F; DiCarlo E; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 1997 Dec; 61(6):487-92. PubMed ID: 9383276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared bacteria identification with the use of a focal-plane-array detector and microarray printing.
    Kirkwood J; Al-Khaldi SF; Mossoba MM; Sedman J; Ismail AA
    Appl Spectrosc; 2004 Nov; 58(11):1364-8. PubMed ID: 15606943
    [No Abstract]   [Full Text] [Related]  

  • 15. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.
    Mieczkowska A; Mansur SA; Irwin N; Flatt PR; Chappard D; Mabilleau G
    Bone; 2015 Jul; 76():31-9. PubMed ID: 25813583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of altered matrix composition in iliac crest biopsies from patients with idiopathic juvenile osteoporosis.
    Garcia I; Chiodo V; Ma Y; Boskey A
    Connect Tissue Res; 2016; 57(1):28-37. PubMed ID: 26539896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging the material properties of bone specimens using reflection-based infrared microspectroscopy.
    Acerbo AS; Carr GL; Judex S; Miller LM
    Anal Chem; 2012 Apr; 84(8):3607-13. PubMed ID: 22455306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier Transform Infrared Imaging of Bone.
    Paschalis EP
    Methods Mol Biol; 2019; 1914():641-649. PubMed ID: 30729490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of bone chemical composition in osteoporosis using fluorescence-assisted synchrotron infrared microspectroscopy.
    Miller LM; Tibrewala J; Carlson CS
    Cell Mol Biol (Noisy-le-grand); 2000 Sep; 46(6):1035-44. PubMed ID: 10976861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: spatial resolution and sampling versatility.
    Chan KL; Kazarian SG
    Appl Spectrosc; 2003 Apr; 57(4):381-9. PubMed ID: 14658633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.