These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18463857)

  • 1. Repetitive spinal motor neuron discharges following single transcranial magnetic stimulation: relation to dexterity.
    Z'Graggen WJ; Humm AM; Oppliger-Bachmann S; Hosang M; Rösler KM
    Exp Brain Res; 2008 Jul; 188(4):579-87. PubMed ID: 18463857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetitive spinal motor neuron discharges following single transcranial magnetic stimuli: a quantitative study.
    Z'Graggen WJ; Humm AM; Durisch N; Magistris MR; Rösler KM
    Clin Neurophysiol; 2005 Jul; 116(7):1628-37. PubMed ID: 15908271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased probability of repetitive spinal motoneuron activation by transcranial magnetic stimulation after muscle fatigue in healthy subjects.
    Andersen B; Felding UA; Krarup C
    J Appl Physiol (1985); 2012 Mar; 112(5):832-40. PubMed ID: 22174399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The paired-pulse TMS paradigm of short intracortical inhibition is mediated by a reduction of repetitive motor neuron discharges.
    Batzianouli ET; Caranzano L; Nguepnjo Nguissi NA; Miaz B; Herrmann FR; Benninger DH
    J Neurophysiol; 2024 Mar; 131(3):541-547. PubMed ID: 38264793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects.
    Ridding MC; Brouwer B; Miles TS; Pitcher JB; Thompson PD
    Exp Brain Res; 2000 Mar; 131(1):135-43. PubMed ID: 10759179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B; Westlund B; Krarup C
    J Physiol; 2003 Aug; 551(Pt 1):345-56. PubMed ID: 12824449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortico-motoneuronal output to intrinsic hand muscles is differentially influenced by static changes in shoulder positions.
    Dominici F; Popa T; Ginanneschi F; Mazzocchio R; Rossi A
    Exp Brain Res; 2005 Aug; 164(4):500-4. PubMed ID: 15883808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trial-to-trial size variability of motor-evoked potentials. A study using the triple stimulation technique.
    Rösler KM; Roth DM; Magistris MR
    Exp Brain Res; 2008 May; 187(1):51-9. PubMed ID: 18231784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortico-motoneuronal excitation of three hand muscles determined by a novel penta-stimulation technique.
    Ziemann U; Ilić TV; Alle H; Meintzschel F
    Brain; 2004 Aug; 127(Pt 8):1887-98. PubMed ID: 15229128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetry of motor cortex excitability during a simple motor task: relationships with handedness and manual performance.
    Brouwer B; Sale MV; Nordstrom MA
    Exp Brain Res; 2001 Jun; 138(4):467-76. PubMed ID: 11465745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanism of selective finger movement independent of synergistic movement.
    Aoyama T; Kaneko F; Ohashi Y; Kohno Y
    Exp Brain Res; 2019 Dec; 237(12):3485-3492. PubMed ID: 31741000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voluntary movement reverses the effect of cathodal transcranial direct current stimulation (tDCS) on corticomotor excitability.
    Ataoglu EE; Caglayan HB; Cengiz B
    Exp Brain Res; 2017 Sep; 235(9):2653-2659. PubMed ID: 28577024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Prize: Central motor excitability changes after spinal manipulation: a transcranial magnetic stimulation study.
    Dishman JD; Ball KA; Burke J
    J Manipulative Physiol Ther; 2002 Jan; 25(1):1-9. PubMed ID: 11898013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemispheric asymmetry of surround inhibition in the human motor system.
    Shin HW; Sohn YH; Hallett M
    Clin Neurophysiol; 2009 Apr; 120(4):816-9. PubMed ID: 19299196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion.
    Sasaki A; Kaneko N; Masugi Y; Milosevic M; Nakazawa K
    J Neurophysiol; 2020 Sep; 124(3):652-667. PubMed ID: 32697605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability.
    Bocci T; Marceglia S; Vergari M; Cognetto V; Cogiamanian F; Sartucci F; Priori A
    J Neurophysiol; 2015 Jul; 114(1):440-6. PubMed ID: 25925328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateralized asymmetries in distribution of muscular evoked responses: An evidence of specialized motor control over an intrinsic hand muscle.
    Souza VH; Baffa O; Garcia MAC
    Brain Res; 2018 Apr; 1684():60-66. PubMed ID: 29408387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticospinal excitability during imagined and observed dynamic force production tasks: effortfulness matters.
    Helm F; Marinovic W; Krüger B; Munzert J; Riek S
    Neuroscience; 2015 Apr; 290():398-405. PubMed ID: 25639231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.