BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18464330)

  • 1. New method for yeast identification using Burrows-Wheeler transform.
    Pokrzywa R
    J Bioinform Comput Biol; 2008 Apr; 6(2):403-13. PubMed ID: 18464330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA sequence compression using the burrows-wheeler transform.
    Adjeroh D; Zhang Y; Mukherjee A; Powell M; Bell T
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():303-13. PubMed ID: 15838146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the Burrows-Wheeler Transform for searching for tandem repeats in DNA sequences.
    Pokrzywa R
    Int J Bioinform Res Appl; 2009; 5(4):432-46. PubMed ID: 19640830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compression of Multiple DNA Sequences Using Intra-Sequence and Inter-Sequence Similarities.
    Cheng KO; Wu P; Law NF; Siu WC
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1322-32. PubMed ID: 26671804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using GPUs for the exact alignment of short-read genetic sequences by means of the Burrows-Wheeler transform.
    Salavert Torres J; Blanquer Espert I; Domínguez AT; Hernández García V; Medina Castelló I; Tárraga Giménez J; Dopazo Blázquez J
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1245-56. PubMed ID: 22450827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved heuristic algorithm for finding motif signals in DNA sequences.
    Huang CW; Lee WS; Hsieh SY
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):959-75. PubMed ID: 20855921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform.
    Cox AJ; Bauer MJ; Jakobi T; Rosone G
    Bioinformatics; 2012 Jun; 28(11):1415-9. PubMed ID: 22556365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel Computation of the Burrows-Wheeler Transform of Short Reads Using Prefix Parallelism.
    Kimura K; Koike A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):3-13. PubMed ID: 29994538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRESCO: Referential compression of highly similar sequences.
    Wandelt S; Leser U
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1275-88. PubMed ID: 24524158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressed pattern matching in DNA sequences.
    Chen L; Lu S; Ram J
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():62-8. PubMed ID: 16448000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compression of annotated nucleotide sequences.
    Korodi G; Tabus I
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):447-457. PubMed ID: 17666764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals.
    Reneker J; Shyu CR
    BMC Bioinformatics; 2005 May; 6():111. PubMed ID: 15869708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iterative dictionary construction for compression of large DNA data sets.
    Kuruppu S; Beresford-Smith B; Conway T; Zobel J
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):137-49. PubMed ID: 21576758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GATA: a graphic alignment tool for comparative sequence analysis.
    Nix DA; Eisen MB
    BMC Bioinformatics; 2005 Jan; 6():9. PubMed ID: 15655071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quaternionic periodicity transform: an algebraic solution to the tandem repeat detection problem.
    Brodzik AK
    Bioinformatics; 2007 Mar; 23(6):694-700. PubMed ID: 17237057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Burrows-Wheeler similarity distribution between biological sequences based on Burrows-Wheeler transform.
    Yang L; Zhang X; Wang T
    J Theor Biol; 2010 Feb; 262(4):742-9. PubMed ID: 19903487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Text compression using hybrids of BWT and GBAM.
    Al-Nassiri A
    Int J Neural Syst; 2003 Feb; 13(1):39-45. PubMed ID: 12638122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CoGI: Towards Compressing Genomes as an Image.
    Xie X; Zhou S; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1275-85. PubMed ID: 26671800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient motif finding algorithms for large-alphabet inputs.
    Kuksa PP; Pavlovic V
    BMC Bioinformatics; 2010 Oct; 11 Suppl 8(Suppl 8):S1. PubMed ID: 21034426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Compression and Indexing for Highly Repetitive DNA Sequence Collections.
    Huo H; Chen X; Guo X; Vitter JS
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2394-2408. PubMed ID: 31985436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.