BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 18464896)

  • 1. The impact of recombination on nucleotide substitutions in the human genome.
    Duret L; Arndt PF
    PLoS Genet; 2008 May; 4(5):e1000071. PubMed ID: 18464896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombination drives the evolution of GC-content in the human genome.
    Meunier J; Duret L
    Mol Biol Evol; 2004 Jun; 21(6):984-90. PubMed ID: 14963104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanishing GC-rich isochores in mammalian genomes.
    Duret L; Semon M; Piganeau G; Mouchiroud D; Galtier N
    Genetics; 2002 Dec; 162(4):1837-47. PubMed ID: 12524353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biased clustered substitutions in the human genome: the footprints of male-driven biased gene conversion.
    Dreszer TR; Wall GD; Haussler D; Pollard KS
    Genome Res; 2007 Oct; 17(10):1420-30. PubMed ID: 17785536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rate, not the spectrum, of base pair substitutions changes at a GC-content transition in the human NF1 gene region: implications for the evolution of the mammalian genome structure.
    Schmegner C; Hoegel J; Vogel W; Assum G
    Genetics; 2007 Jan; 175(1):421-8. PubMed ID: 17057231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hotspots of biased nucleotide substitutions in human genes.
    Berglund J; Pollard KS; Webster MT
    PLoS Biol; 2009 Jan; 7(1):e26. PubMed ID: 19175294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twisted signatures of GC-biased gene conversion embedded in an evolutionary stable karyotype.
    Mugal CF; Arndt PF; Ellegren H
    Mol Biol Evol; 2013 Jul; 30(7):1700-12. PubMed ID: 23564940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes.
    Capra JA; Hubisz MJ; Kostka D; Pollard KS; Siepel A
    PLoS Genet; 2013; 9(8):e1003684. PubMed ID: 23966869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substantial regional variation in substitution rates in the human genome: importance of GC content, gene density, and telomere-specific effects.
    Arndt PF; Hwa T; Petrov DA
    J Mol Evol; 2005 Jun; 60(6):748-63. PubMed ID: 15959677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of genomic context on mutation patterns in the human genome inferred from rare variants.
    Schaibley VM; Zawistowski M; Wegmann D; Ehm MG; Nelson MR; St Jean PL; Abecasis GR; Novembre J; Zöllner S; Li JZ
    Genome Res; 2013 Dec; 23(12):1974-84. PubMed ID: 23990608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of isochores: evidence from SNP frequency distributions.
    Lercher MJ; Smith NG; Eyre-Walker A; Hurst LD
    Genetics; 2002 Dec; 162(4):1805-10. PubMed ID: 12524350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong regional biases in nucleotide substitution in the chicken genome.
    Webster MT; Axelsson E; Ellegren H
    Mol Biol Evol; 2006 Jun; 23(6):1203-16. PubMed ID: 16551647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant positive correlation between the recombination rate and GC content in the human pseudoautosomal region.
    Chen JF; Lu F; Chen SS; Tao SH
    Genome; 2006 May; 49(5):413-9. PubMed ID: 16767166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking great apes genome evolution across time scales using polymorphism-aware phylogenetic models.
    De Maio N; Schlötterer C; Kosiol C
    Mol Biol Evol; 2013 Oct; 30(10):2249-62. PubMed ID: 23906727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meiotic recombination strongly influences GC-content evolution in short regions in the mouse genome.
    Clément Y; Arndt PF
    Mol Biol Evol; 2013 Dec; 30(12):2612-8. PubMed ID: 24030552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both selective and neutral processes drive GC content evolution in the human genome.
    Pozzoli U; Menozzi G; Fumagalli M; Cereda M; Comi GP; Cagliani R; Bresolin N; Sironi M
    BMC Evol Biol; 2008 Mar; 8():99. PubMed ID: 18371205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new perspective on isochore evolution.
    Duret L; Eyre-Walker A; Galtier N
    Gene; 2006 Dec; 385():71-4. PubMed ID: 16971063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Male-driven biased gene conversion governs the evolution of base composition in human alu repeats.
    Webster MT; Smith NG; Hultin-Rosenberg L; Arndt PF; Ellegren H
    Mol Biol Evol; 2005 Jun; 22(6):1468-74. PubMed ID: 15772377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expected relationship between the silent substitution rate and the GC content: implications for the evolution of isochores.
    Piganeau G; Mouchiroud D; Duret L; Gautier C
    J Mol Evol; 2002 Jan; 54(1):129-33. PubMed ID: 11734906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes.
    Chen CL; Rappailles A; Duquenne L; Huvet M; Guilbaud G; Farinelli L; Audit B; d'Aubenton-Carafa Y; Arneodo A; Hyrien O; Thermes C
    Genome Res; 2010 Apr; 20(4):447-57. PubMed ID: 20103589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.