These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18464924)

  • 1. Effects of subminimum inhibitory concentrations of antibiotics on the Pasteurella multocida proteome: a systems approach.
    Nanduri B; Lawrence ML; Peddinti DS; Burgess SC
    Comp Funct Genomics; 2008; 2008():254836. PubMed ID: 18464924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of subminimum inhibitory concentrations of antibiotics on the Pasteurella multocida proteome.
    Nanduri B; Lawrence ML; Boyle CR; Ramkumar M; Burgess SC
    J Proteome Res; 2006 Mar; 5(3):572-80. PubMed ID: 16512672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transcriptional response of Pasteurella multocida to three classes of antibiotics.
    Nanduri B; Shack LA; Burgess SC; Lawrence ML
    BMC Genomics; 2009 Jul; 10 Suppl 2(Suppl 2):S4. PubMed ID: 19607655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the Pasteurella multocida outer membrane sub-proteome and its response to the in vivo environment of the natural host.
    Boyce JD; Cullen PA; Nguyen V; Wilkie I; Adler B
    Proteomics; 2006 Feb; 6(3):870-80. PubMed ID: 16372271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short communication: Interaction of the isomers carvacrol and thymol with the antibiotics doxycycline and tilmicosin: In vitro effects against pathogenic bacteria commonly found in the respiratory tract of calves.
    Kissels W; Wu X; Santos RR
    J Dairy Sci; 2017 Feb; 100(2):970-974. PubMed ID: 28012625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-associated protein interaction networks reveal the key functional modules related to survival and virulence of Pasteurella multocida.
    Jatuponwiphat T; Chumnanpuen P; Othman S; E-Kobon T; Vongsangnak W
    Microb Pathog; 2019 Feb; 127():257-266. PubMed ID: 30550841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Antibiotic sensitivity of Pasteurella multocida and related bacteria (bacterial groups M5 and EF4). Studies of minimal inhibitory concentrations by agar dilution].
    Lion C; Mory F; Conroy MC; Weber M; Burdin JC
    Pathol Biol (Paris); 1986 Dec; 34(10):1061-6. PubMed ID: 3547261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability of cell surface hydrophobicity among Pasteurella multocida somatic serotype and Actinobacillus lignieresii strains.
    Darnell KR; Hart ME; Champlin FR
    J Clin Microbiol; 1987 Jan; 25(1):67-71. PubMed ID: 3793876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of antibiotics on the growth and morphology of Pasteurella multocida.
    Jacques M; Lebrun A; Foiry B; Dargis M; Malouin F
    J Gen Microbiol; 1991 Nov; 137(11):2663-8. PubMed ID: 1783910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sub-MICs of antibiotics on cell surface characteristics and virulence of Pasteurella multocida.
    Lebrun A; Caya M; Jacques M
    Antimicrob Agents Chemother; 1992 Oct; 36(10):2093-8. PubMed ID: 1444290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outer membrane permeability for nonpolar antimicrobial agents underlies extreme susceptibility of Pasteurella multocida to the hydrophobic biocide triclosan.
    Ellison ML; Champlin FR
    Vet Microbiol; 2007 Oct; 124(3-4):310-8. PubMed ID: 17560745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postantibiotic effects and postantibiotic sub-MIC effects of erythromycin, roxithromycin, tilmicosin, and tylosin on Pasteurella multocida.
    Lim J; Yun H
    Int J Antimicrob Agents; 2001 Jun; 17(6):471-6. PubMed ID: 11397617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new pleuromutilin candidate with potent antibacterial activity against Pasteurella multocida.
    Fu Y; Ma L; Yi Y; Fan Y; Liang J; Shang R
    Microb Pathog; 2019 Feb; 127():202-207. PubMed ID: 30529392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs.
    Dayao D; Gibson JS; Blackall PJ; Turni C
    Aust Vet J; 2016 Jul; 94(7):227-31. PubMed ID: 27349882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoration of Pasteurella multocida lipopolysaccharide with phosphocholine is important for virulence.
    Harper M; Cox A; St Michael F; Parnas H; Wilkie I; Blackall PJ; Adler B; Boyce JD
    J Bacteriol; 2007 Oct; 189(20):7384-91. PubMed ID: 17704225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A compendium of antibiotic-induced transcription profiles reveals broad regulation of Pasteurella multocida virulence genes.
    Melnikow E; Schoenfeld C; Spehr V; Warrass R; Gunkel N; Duszenko M; Selzer PM; Ullrich HJ
    Vet Microbiol; 2008 Oct; 131(3-4):277-92. PubMed ID: 18501535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marjoram extract down-regulates the expression of Pasteurella multocida adhesion, colonization and toxin genes: A potential mechanism for its antimicrobial activity.
    Abd El-Hamid MI; El-Sayed ME; Ali AR; Abdallah HM; Arnaout MI; El-Mowalid GA
    Comp Immunol Microbiol Infect Dis; 2019 Feb; 62():101-108. PubMed ID: 30711039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule.
    Mégroz M; Kleifeld O; Wright A; Powell D; Harrison P; Adler B; Harper M; Boyce JD
    Infect Immun; 2016 May; 84(5):1361-1370. PubMed ID: 26883595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial resistance of Pasteurella multocida isolated from diseased food-producing animals and pets.
    Bourély C; Cazeau G; Jouy E; Haenni M; Madec JY; Jarrige N; Leblond A; Gay E
    Vet Microbiol; 2019 Aug; 235():280-284. PubMed ID: 31383313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis.
    Blondeau JM; Fitch SD
    PLoS One; 2019; 14(1):e0210154. PubMed ID: 30629633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.