These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18465087)

  • 1. A new peptide docking strategy using a mean field technique with mutually orthogonal Latin square sampling.
    Arun Prasad P; Gautham N
    J Comput Aided Mol Des; 2008 Nov; 22(11):815-29. PubMed ID: 18465087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-ligand docking using mutually orthogonal Latin squares (MOLSDOCK).
    Viji SN; Prasad PA; Gautham N
    J Chem Inf Model; 2009 Dec; 49(12):2687-94. PubMed ID: 19968302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iMOLSDOCK: Induced-fit docking using mutually orthogonal Latin squares (MOLS).
    Paul DS; Gautham N
    J Mol Graph Model; 2017 Jun; 74():89-99. PubMed ID: 28365533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-small molecule docking with receptor flexibility in iMOLSDOCK.
    Sam Paul D; Gautham N
    J Comput Aided Mol Des; 2018 Sep; 32(9):889-900. PubMed ID: 30128925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular docking studies of protein-nucleotide complexes using MOLSDOCK (mutually orthogonal Latin squares DOCK).
    Viji SN; Balaji N; Gautham N
    J Mol Model; 2012 Aug; 18(8):3705-22. PubMed ID: 22382575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MOLS 2.0: software package for peptide modeling and protein-ligand docking.
    Paul DS; Gautham N
    J Mol Model; 2016 Oct; 22(10):239. PubMed ID: 27638416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced sampling of the molecular potential energy surface using mutually orthogonal latin squares: application to peptide structures.
    Vengadesan K; Gautham N
    Biophys J; 2003 May; 84(5):2897-906. PubMed ID: 12719222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved docking of peptides and small molecules in iMOLSDOCK.
    Paul DS; Karthe P
    J Mol Model; 2022 Dec; 29(1):12. PubMed ID: 36536252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DynaDock: A new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility.
    Antes I
    Proteins; 2010 Apr; 78(5):1084-104. PubMed ID: 20017216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.
    Estrada T; Zhang B; Cicotti P; Armen RS; Taufer M
    Comput Biol Med; 2012 Jul; 42(7):758-71. PubMed ID: 22658682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An application of experimental design using mutually orthogonal Latin squares in conformational studies of peptides.
    Vengadesan K; Anbupalam T; Gautham N
    Biochem Biophys Res Commun; 2004 Apr; 316(3):731-7. PubMed ID: 15033460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring conformational space using a mean field technique with MOLS sampling.
    Prasad PA; Kanagasabai V; Arunachalam J; Gautham N
    J Biosci; 2007 Aug; 32(5):909-20. PubMed ID: 17914233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MDockPeP: A Web Server for Blind Prediction of Protein-Peptide Complex Structures.
    Xu X; Zou X
    Methods Mol Biol; 2020; 2165():259-272. PubMed ID: 32621230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated flexible docking of ligands into flexible synthetic receptors using forward and inverse docking strategies.
    Kämper A; Apostolakis J; Rarey M; Marian CM; Lengauer T
    J Chem Inf Model; 2006; 46(2):903-11. PubMed ID: 16563022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating sampling techniques and inverse virtual screening: toward the discovery of artificial peptide-based receptors for ligands.
    Pérez GM; Salomón LA; Montero-Cabrera LA; de la Vega JM; Mascini M
    Mol Divers; 2016 May; 20(2):421-38. PubMed ID: 26553204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins.
    Devaurs D; Antunes DA; Hall-Swan S; Mitchell N; Moll M; Lizée G; Kavraki LE
    BMC Mol Cell Biol; 2019 Sep; 20(1):42. PubMed ID: 31488048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using AutoDock for ligand-receptor docking.
    Morris GM; Huey R; Olson AJ
    Curr Protoc Bioinformatics; 2008 Dec; Chapter 8():Unit 8.14. PubMed ID: 19085980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LigDockCSA: protein-ligand docking using conformational space annealing.
    Shin WH; Heo L; Lee J; Ko J; Seok C; Lee J
    J Comput Chem; 2011 Nov; 32(15):3226-32. PubMed ID: 21837636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pso@autodock: a fast flexible molecular docking program based on Swarm intelligence.
    Namasivayam V; Günther R
    Chem Biol Drug Des; 2007 Dec; 70(6):475-84. PubMed ID: 17986206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.