These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 18465403)
1. Kinase activity, heat shock protein 27 phosphorylation, and lung epithelial cell glutathione. Jackson RM; Garcia-Rojas R Exp Lung Res; 2008 Jun; 34(5):245-62. PubMed ID: 18465403 [TBL] [Abstract][Full Text] [Related]
2. The involvement of L-gamma-glutamyl-L-cysteinyl-glycine (glutathione/GSH) in the mechanism of redox signaling mediating MAPK(p38)-dependent regulation of pro-inflammatory cytokine production. Haddad JJ Biochem Pharmacol; 2002 Jan; 63(2):305-20. PubMed ID: 11841806 [TBL] [Abstract][Full Text] [Related]
3. MAPKAPK-2 modulates p38-MAPK localization and small heat shock protein phosphorylation but does not mediate the injury associated with p38-MAPK activation during myocardial ischemia. Gorog DA; Jabr RI; Tanno M; Sarafraz N; Clark JE; Fisher SG; Cao XB; Bellahcene M; Dighe K; Kabir AM; Quinlan RA; Kato K; Gaestel M; Marber MS; Heads RJ Cell Stress Chaperones; 2009 Sep; 14(5):477-89. PubMed ID: 19214782 [TBL] [Abstract][Full Text] [Related]
4. Cytokine regulation by MAPK activated kinase 2 in keratinocytes exposed to sulfur mustard. Yego EC; Dillman JF Toxicol In Vitro; 2013 Oct; 27(7):2067-75. PubMed ID: 23851002 [TBL] [Abstract][Full Text] [Related]
5. Mitogen-activated protein kinase-activated protein kinase 2 mediates resistance to hydrogen peroxide-induced oxidative stress in human hepatobiliary cancer cells. Nguyen Ho-Bouldoires TH; Clapéron A; Mergey M; Wendum D; Desbois-Mouthon C; Tahraoui S; Fartoux L; Chettouh H; Merabtene F; Scatton O; Gaestel M; Praz F; Housset C; Fouassier L Free Radic Biol Med; 2015 Dec; 89():34-46. PubMed ID: 26169728 [TBL] [Abstract][Full Text] [Related]
6. Sec6 enhances cell migration and suppresses apoptosis by elevating the phosphorylation of p38 MAPK, MK2, and HSP27. Tanaka T; Iino M; Goto K Cell Signal; 2018 Sep; 49():1-16. PubMed ID: 29729335 [TBL] [Abstract][Full Text] [Related]
7. Role of p38 MAPK in UVB-induced inflammatory responses in the skin of SKH-1 hairless mice. Kim AL; Labasi JM; Zhu Y; Tang X; McClure K; Gabel CA; Athar M; Bickers DR J Invest Dermatol; 2005 Jun; 124(6):1318-25. PubMed ID: 15955110 [TBL] [Abstract][Full Text] [Related]
8. NSC-87877 inhibits DUSP26 function in neuroblastoma resulting in p53-mediated apoptosis. Shi Y; Ma IT; Patel RH; Shang X; Chen Z; Zhao Y; Cheng J; Fan Y; Rojas Y; Barbieri E; Chen Z; Yu Y; Jin J; Kim ES; Shohet JM; Vasudevan SA; Yang J Cell Death Dis; 2015 Aug; 6(8):e1841. PubMed ID: 26247726 [TBL] [Abstract][Full Text] [Related]
9. Post-transcriptional regulation of TNF-induced expression of ICAM-1 and IL-8 in human lung microvascular endothelial cells: an obligatory role for the p38 MAPK-MK2 pathway dissociated with HSP27. Su X; Ao L; Zou N; Song Y; Yang X; Cai GY; Fullerton DA; Meng X Biochim Biophys Acta; 2008 Sep; 1783(9):1623-31. PubMed ID: 18486623 [TBL] [Abstract][Full Text] [Related]
10. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Xu L; Chen S; Bergan RC Oncogene; 2006 May; 25(21):2987-98. PubMed ID: 16407830 [TBL] [Abstract][Full Text] [Related]
13. Role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced pulmonary epithelial hyperpermeability. Wang W; Weng J; Yu L; Huang Q; Jiang Y; Guo X BMC Pulm Med; 2018 Nov; 18(1):178. PubMed ID: 30482200 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation of heat shock protein 27 antagonizes TNF-α induced HeLa cell apoptosis via regulating TAK1 ubiquitination and activation of p38 and ERK signaling. Qi Z; Shen L; Zhou H; Jiang Y; Lan L; Luo L; Yin Z Cell Signal; 2014 Jul; 26(7):1616-25. PubMed ID: 24686082 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylation status of heat shock protein 27 plays a key role in gemcitabine-induced apoptosis of pancreatic cancer cells. Nakashima M; Adachi S; Yasuda I; Yamauchi T; Kawaguchi J; Itani M; Yoshioka T; Matsushima-Nishiwaki R; Hirose Y; Kozawa O; Moriwaki H Cancer Lett; 2011 Dec; 313(2):218-25. PubMed ID: 21999932 [TBL] [Abstract][Full Text] [Related]
16. Hypoxia and kinase activity regulate lung epithelial cell glutathione. Jackson RM; Gupta C Exp Lung Res; 2010 Feb; 36(1):45-56. PubMed ID: 20128681 [TBL] [Abstract][Full Text] [Related]
17. Mitogen-activated protein kinase-activated protein kinase 2 in neuroinflammation, heat shock protein 27 phosphorylation, and cell cycle: role and targeting. Gurgis FM; Ziaziaris W; Munoz L Mol Pharmacol; 2014 Feb; 85(2):345-56. PubMed ID: 24296859 [TBL] [Abstract][Full Text] [Related]
18. The p38 MAPK-MK2 axis regulates E2F1 and FOXM1 expression after epirubicin treatment. de Olano N; Koo CY; Monteiro LJ; Pinto PH; Gomes AR; Aligue R; Lam EW Mol Cancer Res; 2012 Sep; 10(9):1189-202. PubMed ID: 22802261 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation-dependent cellular localization and thermoprotective role of heat shock protein 25 in hippocampal progenitor cells. Geum D; Son GH; Kim K J Biol Chem; 2002 May; 277(22):19913-21. PubMed ID: 11912188 [TBL] [Abstract][Full Text] [Related]
20. Glutathione depletion in CYP2E1-expressing liver cells induces toxicity due to the activation of p38 mitogen-activated protein kinase and reduction of nuclear factor-kappaB DNA binding activity. Wu D; Cederbaum A Mol Pharmacol; 2004 Sep; 66(3):749-60. PubMed ID: 15322268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]