BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18465885)

  • 1. Computational enzymatic catalysis.
    Ramos MJ; Fernandes PA
    Acc Chem Res; 2008 Jun; 41(6):689-98. PubMed ID: 18465885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribonucleotide activation by enzyme ribonucleotide reductase: understanding the role of the enzyme.
    Cerqueira NM; Fernandes PA; Eriksson LA; Ramos MJ
    J Comput Chem; 2004 Dec; 25(16):2031-7. PubMed ID: 15481089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for Computational Enzymatic Reactivity Based on Geometry Optimisation.
    Cerqueira NMFSA; Fernandes PA; Ramos MJ
    Chemphyschem; 2018 Mar; 19(6):669-689. PubMed ID: 29044952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational enzymatic catalysis--clarifying enzymatic mechanisms with the help of computers.
    Sousa SF; Fernandes PA; Ramos MJ
    Phys Chem Chem Phys; 2012 Sep; 14(36):12431-41. PubMed ID: 22870506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydration of ribonucleotides catalyzed by ribonucleotide reductase: the role of the enzyme.
    Cerqueira NM; Fernandes PA; Eriksson LA; Ramos MJ
    Biophys J; 2006 Mar; 90(6):2109-19. PubMed ID: 16361339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of thiols by ribonucleotide reductase.
    Holmgren A; Sengupta R
    Free Radic Biol Med; 2010 Dec; 49(11):1617-28. PubMed ID: 20851762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase.
    Bennati M; Lendzian F; Schmittel M; Zipse H
    Biol Chem; 2005 Oct; 386(10):1007-22. PubMed ID: 16218873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase.
    Torrent M; Musaev DG; Basch H; Morokuma K
    J Comput Chem; 2002 Jan; 23(1):59-76. PubMed ID: 11913390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of ribonucleotide reductase mechanism-based inhibition by 2'-azido-2'-deoxyribonucleoside 5'-diphosphates.
    Pereira S; Fernandes PA; Ramos MJ
    J Comput Chem; 2004 Jan; 25(2):227-37. PubMed ID: 14648621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer.
    Sintchak MD; Arjara G; Kellogg BA; Stubbe J; Drennan CL
    Nat Struct Biol; 2002 Apr; 9(4):293-300. PubMed ID: 11875520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study on the inhibition of ribonucleotide reductase by 2'-mercapto-2'-deoxyribonucleoside-5'-diphosphates.
    Pereira S; Fernandes PA; Ramos MJ
    J Am Chem Soc; 2005 Apr; 127(14):5174-9. PubMed ID: 15810852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ribonucleotide reductase--transition enzymes from RNA metabolism to DNA metabolism].
    Kollarova M; Labudova O
    Biokhimiia; 1991 Dec; 56(12):2115-24. PubMed ID: 1725494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribonucleotide reductases: substrate specificity by allostery.
    Reichard P
    Biochem Biophys Res Commun; 2010 May; 396(1):19-23. PubMed ID: 20494104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations on the critical states of the farnesyltransferase enzyme.
    Sousa SF; Fernandes PA; Ramos MJ
    Bioorg Med Chem; 2009 May; 17(9):3369-78. PubMed ID: 19369081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes.
    Jensen KP; Bell CB; Clay MD; Solomon EI
    J Am Chem Soc; 2009 Sep; 131(34):12155-71. PubMed ID: 19663382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational analyses of the reaction coordinate of glycosidases.
    Davies GJ; Planas A; Rovira C
    Acc Chem Res; 2012 Feb; 45(2):308-16. PubMed ID: 21923088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies on the mode of inhibition of ribonucleotide reductase by 2'-substituted substrate analogues.
    Fernandes PA; Ramos MJ
    Chemistry; 2003 Dec; 9(23):5916-25. PubMed ID: 14673863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophilic coordination catalysis: a summary of previous thought and a new angle of analysis.
    Houk RJ; Monzingo A; Anslyn EV
    Acc Chem Res; 2008 Mar; 41(3):401-10. PubMed ID: 18229891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.