BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18465958)

  • 1. Quantitative second harmonic generation imaging and modeling of the optical clearing mechanism in striated muscle and tendon.
    LaComb R; Nadiarnykh O; Carey S; Campagnola PJ
    J Biomed Opt; 2008; 13(2):021109. PubMed ID: 18465958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle.
    Plotnikov S; Juneja V; Isaacson AB; Mohler WA; Campagnola PJ
    Biophys J; 2006 Jan; 90(1):328-39. PubMed ID: 16214853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing.
    Nadiarnykh O; Campagnola PJ
    Opt Express; 2009 Mar; 17(7):5794-806. PubMed ID: 19333348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous determination of the second-harmonic generation emission directionality and reduced scattering coefficient from three-dimensional imaging of thick tissues.
    Hall G; Eliceiri KW; Campagnola PJ
    J Biomed Opt; 2013 Nov; 18(11):116008. PubMed ID: 24220726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical clearing of flowing blood using dextrans with spectral domain optical coherence tomography.
    Xu X; Yu L; Chen Z
    J Biomed Opt; 2008; 13(2):021107. PubMed ID: 18465956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation.
    Lacomb R; Nadiarnykh O; Campagnola PJ
    Biophys J; 2008 Jun; 94(11):4504-14. PubMed ID: 18281387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the interpretation of second harmonic generation intensity profiles of striated muscle.
    Paesen R; Smolders S; Wens I; Notelaers K; de Hoyos Vega JM; Bito V; Eijnde BO; Hansen D; Ameloot M
    J Biomed Opt; 2015 Aug; 20(8):86010. PubMed ID: 26277989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycerol-mediated nanostructure modification leading to improved transparency of porous polymeric scaffolds for high performance 3D cell imaging.
    Zhao S; Shen Z; Wang J; Li X; Zeng Y; Wang B; He Y; Du Y
    Biomacromolecules; 2014 Jul; 15(7):2521-31. PubMed ID: 24884229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of optical clearing mechanisms in muscle during treatment with glycerol and gadobutrol solutions.
    Silva HF; Martins IS; Bogdanov AA; Tuchin VV; Oliveira LM
    J Biophotonics; 2023 Jan; 16(1):e202200205. PubMed ID: 36101493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydration mechanism of optical clearing in tissue.
    Rylander CG; Stumpp OF; Milner TE; Kemp NJ; Mendenhall JM; Diller KR; Welch AJ
    J Biomed Opt; 2006; 11(4):041117. PubMed ID: 16965145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography.
    Ugryumova N; Gangnus SV; Matcher SJ
    Opt Lett; 2006 Aug; 31(15):2305-7. PubMed ID: 16832467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the optical clearing effects of 50% glycerol in ex vivo human skin by harmonic generation microscopy.
    Lai JH; Liao EY; Liao YH; Sun CK
    Sci Rep; 2021 Jan; 11(1):329. PubMed ID: 33431907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical clearing of skin using flash lamp-induced enhancement of epidermal permeability.
    Tuchin VV; Altshuler GB; Gavrilova AA; Pravdin AB; Tabatadze D; Childs J; Yaroslavsky IV
    Lasers Surg Med; 2006 Oct; 38(9):824-36. PubMed ID: 17044094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of the mechanisms of optical clearing in collagen tissue with multiphoton imaging.
    Hovhannisyan V; Hu PS; Chen SJ; Kim CS; Dong CY
    J Biomed Opt; 2013 Apr; 18(4):046004. PubMed ID: 23552636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transillumination optical tomography of tissue-engineered blood vessels: a Monte Carlo simulation.
    Yao G; Haidekker MA
    Appl Opt; 2005 Jul; 44(20):4265-71. PubMed ID: 16045214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response.
    Psilodimitrakopoulos S; Artigas D; Soria G; Amat-Roldan I; Planas AM; Loza-Alvarez P
    Opt Express; 2009 Jun; 17(12):10168-76. PubMed ID: 19506670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance.
    Xia J; Weaver A; Gerrard DE; Yao G
    J Biomed Opt; 2006; 11(4):040504. PubMed ID: 16965127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound B-scan image simulation, segmentation, and analysis of the equine tendon.
    Meghoufel A; Cloutier G; Crevier-Denoix N; de Guise JA
    Med Phys; 2010 Mar; 37(3):1038-46. PubMed ID: 20384239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second harmonic generation imaging via nonlinear endomicroscopy.
    Bao H; Boussioutas A; Jeremy R; Russell S; Gu M
    Opt Express; 2010 Jan; 18(2):1255-60. PubMed ID: 20173949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refractive index variance of cells and tissues measured by quantitative phase imaging.
    Shan M; Kandel ME; Popescu G
    Opt Express; 2017 Jan; 25(2):1573-1581. PubMed ID: 28158039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.