BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18465980)

  • 1. Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media.
    Palmer GM; Ramanujam N
    J Biomed Opt; 2008; 13(2):024017. PubMed ID: 18465980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model.
    Liu C; Rajaram N; Vishwanath K; Jiang T; Palmer GM; Ramanujam N
    J Biomed Opt; 2012 Jul; 17(7):077012. PubMed ID: 22894524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy.
    Amelink A; Kruijt B; Robinson DJ; Sterenborg HJ
    J Biomed Opt; 2008; 13(5):054051. PubMed ID: 19021431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model.
    Finlay JC; Foster TH
    Appl Opt; 2005 Apr; 44(10):1917-33. PubMed ID: 15813528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous extraction of optical transport parameters and intrinsic fluorescence of tissue mimicking model media using a spatially resolved fluorescence technique.
    Gupta S; Raja VL; Pradhan A
    Appl Opt; 2006 Oct; 45(28):7529-37. PubMed ID: 16983443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
    Ong YH; Zhu C; Liu Q
    J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovering intrinsic fluorescence by Monte Carlo modeling.
    Müller M; Hendriks BH
    J Biomed Opt; 2013 Feb; 18(2):27009. PubMed ID: 23400402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.
    Palmer GM; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoupled fluorescence Monte Carlo model for direct computation of fluorescence in turbid media.
    Luo Z; Deng Y; Wang K; Lian L; Yang X; Luo Q
    J Biomed Opt; 2015 Feb; 20(2):25002. PubMed ID: 25649626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarization.
    Bigelow CE; Foster TH
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2932-43. PubMed ID: 17047721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence spectra provide information on the depth of fluorescent lesions in tissue.
    Swartling J; Svensson J; Bengtsson D; Terike K; Andersson-Engels S
    Appl Opt; 2005 Apr; 44(10):1934-41. PubMed ID: 15813529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    J Biomed Opt; 2008; 13(3):034015. PubMed ID: 18601560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic diffusive transport: connecting microscopic scattering and macroscopic transport properties.
    Alerstam E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063202. PubMed ID: 25019904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of scaling relations to extract intrinsic fluorescence lifetime of targets embedded in turbid media.
    Chernomordik V; Hassan M; Amyot F; Riley J; Gandjbakhche A
    J Biomed Opt; 2008; 13(2):024025. PubMed ID: 18465988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the fluorescence temporal point-spread function in a turbid medium and its application to optical imaging.
    Han SH; Farshchi-Heydari S; Hall DJ
    J Biomed Opt; 2008; 13(6):064038. PubMed ID: 19123684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.