These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 18466294)

  • 21. Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation.
    Hameed S; Prasad T; Banerjee D; Chandra A; Mukhopadhyay CK; Goswami SK; Lattif AA; Chandra J; Mukherjee PK; Ghannoum MA; Prasad R
    FEMS Yeast Res; 2008 Aug; 8(5):744-55. PubMed ID: 18547332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion.
    Heymann P; Gerads M; Schaller M; Dromer F; Winkelmann G; Ernst JF
    Infect Immun; 2002 Sep; 70(9):5246-55. PubMed ID: 12183576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The disruption of JEN1 from Candida albicans impairs the transport of lactate.
    Soares-Silva I; Paiva S; Kötter P; Entian KD; Casal M
    Mol Membr Biol; 2004; 21(6):403-11. PubMed ID: 15764370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clathrin- and Arp2/3-independent endocytosis in the fungal pathogen Candida albicans.
    Epp E; Nazarova E; Regan H; Douglas LM; Konopka JB; Vogel J; Whiteway M
    mBio; 2013 Aug; 4(5):e00476-13. PubMed ID: 23982070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of the activity and kinetic properties of malate dehydrogenase and pyruvate decarboxylase from Candida albicans, Malassezia pachydermatis, and Saccharomyces cerevisiae.
    Tylicki A; Ziolkowska G; Bolkun A; Siemieniuk M; Czerniecki J; Nowakiewicz A
    Can J Microbiol; 2008 Sep; 54(9):734-41. PubMed ID: 18772936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Eisenhaber B; Schneider G; Wildpaner M; Eisenhaber F
    J Mol Biol; 2004 Mar; 337(2):243-53. PubMed ID: 15003443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans.
    Weissman Z; Shemer R; Kornitzer D
    Mol Microbiol; 2002 Jun; 44(6):1551-60. PubMed ID: 12067343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional rewiring: the proof is in the eating.
    Rokas A; Hittinger CT
    Curr Biol; 2007 Aug; 17(16):R626-8. PubMed ID: 17714646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator.
    Knight SAB; Lesuisse E; Stearman R; Klausner RD; Dancis A
    Microbiology (Reading); 2002 Jan; 148(Pt 1):29-40. PubMed ID: 11782496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of outer region mannosylphosphorylation on N-glycan formation by Candida albicans: normal acid-stable N-glycan formation requires acid-labile mannosylphosphate addition.
    Hazen KC; Singleton DR; Masuoka J
    Glycobiology; 2007 Oct; 17(10):1052-60. PubMed ID: 17670843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acquisition of haemoglobin-bound iron by Histophilus somni.
    Tremblay YD; Bahrami F; Niven DF
    Vet Microbiol; 2006 Apr; 114(1-2):104-14. PubMed ID: 16376031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural basis of haem-iron acquisition by fungal pathogens.
    Nasser L; Weissman Z; Pinsky M; Amartely H; Dvir H; Kornitzer D
    Nat Microbiol; 2016 Sep; 1(11):16156. PubMed ID: 27617569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origins of variation in the fungal cell surface.
    Verstrepen KJ; Reynolds TB; Fink GR
    Nat Rev Microbiol; 2004 Jul; 2(7):533-40. PubMed ID: 15197389
    [No Abstract]   [Full Text] [Related]  

  • 34. Synthesis and fungicidal activity of 3,5-dichloropyrazin-2(1H)-one derivatives.
    François IE; Cammue BP; Bresseleers S; Fleuren H; Hoornaert G; Mehta VP; Modha SG; Van der Eycken EV; Thevissen K
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4064-6. PubMed ID: 19556127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase.
    Santos R; Buisson N; Knight S; Dancis A; Camadro JM; Lesuisse E
    Microbiology (Reading); 2003 Mar; 149(Pt 3):579-588. PubMed ID: 12634327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localization and functionality of microsporidian iron-sulphur cluster assembly proteins.
    Goldberg AV; Molik S; Tsaousis AD; Neumann K; Kuhnke G; Delbac F; Vivares CP; Hirt RP; Lill R; Embley TM
    Nature; 2008 Apr; 452(7187):624-8. PubMed ID: 18311129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide identification of fungal GPI proteins.
    De Groot PW; Hellingwerf KJ; Klis FM
    Yeast; 2003 Jul; 20(9):781-96. PubMed ID: 12845604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution: different paths to the same end.
    Rokas A
    Nature; 2006 Sep; 443(7110):401-2. PubMed ID: 17006502
    [No Abstract]   [Full Text] [Related]  

  • 39. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata.
    Srivastava VK; Suneetha KJ; Kaur R
    Biochem J; 2014 Oct; 463(1):103-14. PubMed ID: 24987864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The malfunction of peroxisome has an impact on the oxidative stress sensitivity in Candida albicans.
    Chen Y; Yu Q; Wang H; Dong Y; Jia C; Zhang B; Xiao C; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2016 Oct; 95():1-12. PubMed ID: 27473887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.