BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 1846638)

  • 1. Analysis of the dominance of mutations in cAMP-binding sites of murine type I cAMP-dependent protein kinase in activation of kinase from heterozygous mutant lymphoma cells.
    Shuntoh H; Steinberg RA
    J Cell Physiol; 1991 Jan; 146(1):86-93. PubMed ID: 1846638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second-site mutations in cyclic AMP-sensitive revertants of a Ka mutant of S49 mouse lymphoma cells reduce the affinity of regulatory subunit of cyclic AMP-dependent protein kinase for catalytic subunit.
    Cauthron RD; Gorman KB; Symcox MM; Steinberg RA
    J Cell Physiol; 1995 Nov; 165(2):376-85. PubMed ID: 7593216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of regulatory subunit of type I cyclic AMP-dependent protein kinase: biphasic effects of cyclic AMP in intact S49 mouse lymphoma cells.
    Russell JL; Steinberg RA
    J Cell Physiol; 1987 Feb; 130(2):207-13. PubMed ID: 3029147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase.
    Herberg FW; Taylor SS; Dostmann WR
    Biochemistry; 1996 Mar; 35(9):2934-42. PubMed ID: 8608131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic AMP-resistant mutants of S49 mouse lymphoma cells hemizygous for expression of regulatory subunit of type I cyclic AMP-dependent protein kinase.
    Steinberg RA; Murphy CS; Russell JL; Gorman KB
    Somat Cell Mol Genet; 1987 Nov; 13(6):645-59. PubMed ID: 2823395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular localization of the catalytic subunit from cyclic AMP-dependent protein kinase in mutant Chinese hamster ovary cells deficient in this enzyme.
    Byus CV; Fletcher WH
    J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(1):9-22. PubMed ID: 4038984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional changes in the regulatory subunit of the type II cyclic adenosine 3':5'-monophosphate-dependent protein kinase isozyme during normal and neoplastic lung development.
    Butley MS; Beer DG; Malkinson AM
    Cancer Res; 1984 Jun; 44(6):2689-97. PubMed ID: 6327022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase.
    Iyer GH; Garrod S; Woods VL; Taylor SS
    J Mol Biol; 2005 Sep; 351(5):1110-22. PubMed ID: 16054648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexpression of mutant and wild type protein kinase in lymphoma cells resistant to dibutyryl cyclic AMP.
    Lemaire I; Coffino P
    J Cell Physiol; 1977 Sep; 92(3):437-45. PubMed ID: 198416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of type I cyclic AMP-dependent protein kinases with defective cyclic AMP-binding sites.
    Steinberg RA; Russell JL; Murphy CS; Yphantis DA
    J Biol Chem; 1987 Feb; 262(6):2664-71. PubMed ID: 3029091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of P-glycoprotein expression in cyclic AMP-dependent protein kinase mutants.
    Cvijic ME; Chin KV
    Cell Growth Differ; 1997 Dec; 8(12):1243-7. PubMed ID: 9419412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombinant strategies for rapid purification of catalytic subunits of cAMP-dependent protein kinase.
    Hemmer W; McGlone M; Taylor SS
    Anal Biochem; 1997 Feb; 245(2):115-22. PubMed ID: 9056191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET).
    Prinz A; Diskar M; Erlbruch A; Herberg FW
    Cell Signal; 2006 Oct; 18(10):1616-25. PubMed ID: 16524697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations that prevent cyclic nucleotide binding to binding sites A or B of type I cyclic AMP-dependent protein kinase.
    Ogreid D; Døskeland SO; Gorman KB; Steinberg RA
    J Biol Chem; 1988 Nov; 263(33):17397-404. PubMed ID: 2846564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between cyclic AMP- and phorbol ester-dependent phosphorylation systems in S49 mouse lymphoma cells.
    Kiss Z; Steinberg RA
    J Cell Physiol; 1985 Nov; 125(2):200-6. PubMed ID: 2997237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostaglandin-E2-induced activation of adenosine 3'-5' cyclic monophosphate-dependent protein kinases of a murine macrophage-like cell line (P388D1).
    Yamamoto H; Suzuki T
    J Immunol; 1987 Nov; 139(10):3416-21. PubMed ID: 2824605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations that alter the charge of type I regulatory subunit and modify activation properties of cyclic AMP-dependent protein kinase from S49 mouse lymphoma cells.
    Steinberg RA; Gorman KB; Ogreid D; Døskeland SO; Weber IT
    J Biol Chem; 1991 Feb; 266(6):3547-53. PubMed ID: 1847378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse lymphoma cells with mutations of cyclic AMP-dependent protein kinase.
    Coffino P
    Natl Cancer Inst Monogr; 1978 May; (48):377-80. PubMed ID: 219362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Immunochemical properties of the regulatory subunit of cAMP-dependent protein kinase II].
    Grozdova ID; Niupenko EV; Sveshnikova EV
    Biokhimiia; 1990 Jul; 55(7):1244-50. PubMed ID: 1699610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of control for cAMP-dependent protein kinase from skeletal muscle.
    Beavo JA; Bechtel PJ; Krebs EG
    Adv Cyclic Nucleotide Res; 1975; 5():241-51. PubMed ID: 165668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.